B. Weakened Common Divisor
time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand new concept of the weakened common divisor (WCD) of a list of pairs of integers.

For a given list of pairs of integers (a1,b1)(a1,b1), (a2,b2)(a2,b2), ..., (an,bn)(an,bn) their WCD is arbitrary integer greater than 11, such that it divides at least one element in each pair. WCD may not exist for some lists.

For example, if the list looks like [(12,15),(25,18),(10,24)][(12,15),(25,18),(10,24)], then their WCD can be equal to 22, 33, 55 or 66 (each of these numbers is strictly greater than 11 and divides at least one number in each pair).

You're currently pursuing your PhD degree under Ildar's mentorship, and that's why this problem was delegated to you. Your task is to calculate WCD efficiently.

Input

The first line contains a single integer nn (1≤n≤1500001≤n≤150000) — the number of pairs.

Each of the next nn lines contains two integer values aiai, bibi (2≤ai,bi≤2⋅1092≤ai,bi≤2⋅109).

Output

Print a single integer — the WCD of the set of pairs.

If there are multiple possible answers, output any; if there is no answer, print −1−1.

Examples
input

Copy
3
17 18
15 24
12 15
output

Copy
6
input

Copy
2
10 16
7 17
output

Copy
-1
input

Copy
5
90 108
45 105
75 40
165 175
33 30
output

Copy
5
Note

In the first example the answer is 66 since it divides 1818 from the first pair, 2424 from the second and 1212 from the third ones. Note that other valid answers will also be accepted.

In the second example there are no integers greater than 11 satisfying the conditions.

In the third example one of the possible answers is 55. Note that, for example, 1515 is also allowed, but it's not necessary to maximize the output.

http://codeforces.com/contest/1025/problem/B
大意:求出weakened common divisor (WCD)
给出n对数,他们的WCD为可以将每一对数中至少一个数整除的数(1除外),如果不存在则输出-1.存在多个则输出任意一个。

两种方法:

1.将第一对数保留(a,b),后面每一对数相乘,变成一个数x。然后更新(a,b),将其替换成gcd(a,x),gcd(b,x)。最后再输出a或者b的最小因子

代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll a,b,n;
ll gcd(ll x,ll y){return x%y? gcd(y,x%y):y;}
int main(){
cin>>n;
cin>>a>>b;
for(int i=1;i<n;++i){
ll x,y;cin>>x>>y;
x*=y;a=gcd(a,x);b=gcd(b,x);
}
if(a==1&&b==1){cout<<"-1\n";return 0;}
for(ll i=2;i*i<=a||i*i<=b;++i)
if(a%i==0||b%i==0){cout<<i<<endl;return 0;}
if(a!=1)cout<<a<<endl;
else cout<<b<<endl;
return 0;
}

 方法2.

把第一对数的所有因子提出来然后对后面的每一对数进行测试,如果后面每一对数中只是有一个可以被因子可以整除,则输出因子。

代码:

#include<bits/stdc++.h>
int n,a[150010],b[150010],p[100],c;
void d(int x){
for(int i=2;1ll*i*i<=x;i++)if(x%i==0){
p[c++]=i;
while(x%i==0)x/=i;
}
if(x>1)p[c++]=x;
}
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d%d",a+i,b+i);
d(a[0]);
d(b[0]);
for(int i=0;i<c;i++){
bool fl=1;
for(int j=0;j<n&&fl;j++)if(a[j]%p[i]!=0&&b[j]%p[i]!=0)fl=0;
if(fl){
printf("%d\n",p[i]);
return 0;
}
}
puts("-1");
}

  

C. Plasticine zebra
http://codeforces.com/contest/1025/problem/C
题目大意:输出一个字符串中最长“斑马条纹”的长度,“斑马条纹”指类似于“wbwbwbw”(7)、“bwbwb”(5)。
同时为了最终获得更长的长度,可以在组装斑马之前,Grisha可以进行以下操作0或更多次。他将序列在某个地方分成两部分,然后将它们中的每一部分反转并再次将它们粘在一起。例如,如果Grisha的顺序为“ bwbbw ”(这里' b '表示黑条,' w '表示白条),那么他可以将序列拆分为bw | bbw(此处垂直条代表切割),反转两个部分并获得“ wbwbb ”。

例如
input:
bwwwbwwbw
output:
5

备注:在第一个例子中,可能的操作顺序之一是bwwbww | bw → w | wbwwwbwb → wbwbw wwbw,给出的答案等于5。

思路:
从样例一中逆推,发现最后得到的斑马条纹其实始终来自序列的两侧,经过操作后拼接在一起,于是我们可以直接将两个s拼接在一起,创造出一个2s,此时找出2s中的最长斑马条纹即可。
但要注意最长长度不会超过s的长度,就错在这里没有过fst。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const ll mod=1e9+7;
const int maxn=1e7+50;
const ll inf=0x3f3f3f3f3f3f;
int k;
ull gcd(ull a,ull b)
{
while(b)
{
int t=a%b;
a=b;
b=t;
}
return a;
}
ull lcm(ull a,ull b){
return a/gcd(a,b)*b;
}
ull sum[maxn];
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
string s;
int num=1,maxnum=0;
cin>>s;
s=s+s;
for(int i=1;i<s.size();i++)
{
if(s[i]!=s[i-1])
{
num++;
}
else{
num=1;
}
if(num>maxnum)
{
maxnum=num;
}
}
int k=s.size();
cout<<min(maxnum,k/2)<<endl;
return 0;
}

  

Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) -B C(GCD,最长连续交替序列)的更多相关文章

  1. D. Recovering BST Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)

    http://codeforces.com/contest/1025/problem/D 树 dp 优化 f[x][y][0]=f[x][z][1] & f[z+1][y][0] ( gcd( ...

  2. Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B. Weakened Common Divis

    题目链接 让你找一个数,使得这个数,可以被每个二元组的两个数中的一个数整除. 先将第一个二元组的两个数质因数分解一下,分解的质数加入set中,然后,对剩下的n-1个二元组进行遍历,每次遍历到的二元组对 ...

  3. Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)

    A : A. Doggo Recoloring time limit per test 1 second memory limit per test 256 megabytes input stand ...

  4. Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)-C. Plasticine zebra

    问了学长,感觉还是很迷啊,不过懂了个大概,这个翻转操作,实质不就是在序列后面加上前面部分比如 bw | wwbwwbw  操作过后 wbwbwwbww 而 bw | wwbwwbwbw 这样我们就知道 ...

  5. Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) 题解

    真心简单的一场比赛 就是坑比较多(自己太蠢) A是一个水题 3分钟的时候过了 B也是一个比较简单的题 类似的套路见得多了 但是我当时可能比较困 想了一会才想出来 19分钟的时候过掉了 C同样很显然 性 ...

  6. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) C】

    [链接] 我是链接,点我呀:) [题意] 给你一个字符串s. 让你在其中的某一些位置进行操作.. 把[1..i]和[i+1..n]翻转. 使得里面01交替出现的那种子串的长度最长. [题解] 可以用a ...

  7. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) A】 Doggo Recoloring

    [链接] 我是链接,点我呀:) [题意] 你可以把出现次数大于1的颜色换成其他颜色. 问你最后能不能全都变成同一种颜色 [题解] 判断一下有没有出现次数大于1的就好. 有的话.显然可以一直用它变颜色. ...

  8. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor

    [链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...

  9. E - Down or Right Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)

    http://codeforces.com/contest/1023/problem/E 交互题 #include <cstdio> #include <cstdlib> #i ...

随机推荐

  1. 每天一个Linux命令(3):ls命令

    ls命令用来显示目标列表,在Linux中是使用率较高的命令.ls命令的输出信息可以进行彩色加亮显示,以分区不同类型的文件. 语法 ls(选项)(参数) 选项 -a:显示所有档案及目录(ls内定将档案名 ...

  2. C编译器MinGW安装、下载及在notepad++中运行C程序

    一.C编译器MinGW的下载及安装步骤 打开MinGW官网:http://www.mingw.org/ 图一 图二 图三 图四 图五 图六 系统中配置环境变量: 图七 验证是否安装成功: CMD中运行 ...

  3. 把SVN版本控制讲给 非IT同事 听

    场景: 什么是版本: 什么是版本控制: 为什么要用版本控制: 推荐使用SVN: 如何快速理解SVN: SVN简单使用:

  4. (原)Unreal渲染模块 管线 - 着色器(1)

    @author: 白袍小道 转载悄悄说明下 随缘查看,施主开心就好 说明: 本篇继续Unreal搬山部分的渲染模块的Shader部分, 主要牵扯模块RenderCore, ShaderCore, RH ...

  5. ImportError: dynamic module does not define module export function (PyInit__caffe)

    使用python3运行caffe,报了该错误. 参考网址:https://stackoverflow.com/questions/34295136/importerror-dynamic-module ...

  6. JavaWeb笔记(九)Ajax&Json

    AJAX 实现方式 原生的JS实现方式 //1.创建核心对象 var xmlhttp; if (window.XMLHttpRequest) {// code for IE7+, Firefox, C ...

  7. 第二章 Internet 地址结构

    注意: 这个系列的博客只是为了巩固我学习的知识,参考的价值不是很大,如果需要,请转到http://www.cnblogs.com/ZCplayground/p/7764436.html Interne ...

  8. 用PHP写一个双向队列

    PHP写一个双向队列,其实是在考察PHP几个内置数组的函数 用PHP写一个双向队列 <?php class Deque{ public $queue = array(); /** * 尾部入对 ...

  9. BZOJ5301 [Cqoi2018]异或序列 【莫队】

    题目链接 BZOJ5301 题解 莫队水题 BZOJ400AC纪念 #include<algorithm> #include<iostream> #include<cst ...

  10. 电阻 (resistance)

    电阻 (resistance) 题目描述 每次小x物理作业没做完时,总是会去和老师交流感情,他们之间由此建立起来良好的师生关系.于是有一天,老师带着一道物理难题来见小x. 这道题给出了一个有n个电阻的 ...