poj1743(后缀数组)
poj1743
题意
给出一个数字序列(串),现在要去寻找一个满足下列条件的子串:
- 长度不小于 5
- 存在重复的子串(如果把一个子串的所有数字都加上或减去一个值,与另一子串的数字对应相同,我们称它们重复)
- 重复的子串之间不能重叠
分析
把相邻的数字作差(后面的减前面的)得到一个新的数列。
那么我们去二分答案 m ,判断串上是否存在两个不重叠但是完全相同的长度为 m 的子串。
判断不重叠:在分组时,记录最大最小 sa 值,如果最大减最小的值大于 m ,说明不重叠(这样其实是要至少隔一个位置,注意最后答案加 1)。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 2e4 + 10;
const int INF = 1e9;
int s[MAXN];
int sa[MAXN], t[MAXN], t2[MAXN], c[MAXN], n; // n 为 字符串长度 + 1,s[n - 1] = 0
int rnk[MAXN], height[MAXN];
// 构造字符串 s 的后缀数组。每个字符值必须为 0 ~ m-1
void build_sa(int m) {
int i, *x = t, *y = t2;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[i] = s[i]]++;
for(i = 1; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
for(int k = 1; k <= n; k <<= 1) {
int p = 0;
for(i = n - k; i < n; i++) y[p++] = i;
for(i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[y[i]]]++;
for(i = 0; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[sa[0]] = 0;
for(i = 1; i < n; i++)
x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k] ? p - 1 : p++;
if(p >= n) break;
m = p;
}
}
void getHeight() {
int i, j, k = 0;
for(i = 0; i < n; i++) rnk[sa[i]] = i;
for(i = 0; i < n - 1; i++) {
if(k) k--;
j = sa[rnk[i] - 1];
while(s[i + k] == s[j + k]) k++;
height[rnk[i]] = k;
}
}
int check(int m) {
int cnt = 0, mx = sa[1], mn = sa[1];
for(int i = 2; i < n; i++) {
while(i < n && height[i] >= m) {
mx = max(mx, sa[i]);
mn = min(mn, sa[i]);
i++;
}
if(mx - mn > m) return 1;
mx = sa[i]; mn = sa[i];
}
return 0;
}
int main() {
while(~scanf("%d", &n) && n) {
for(int i = 0; i < n; i++) {
scanf("%d", &s[i]);
}
for(int i = 0; i < n - 1; i++) {
s[i] = s[i + 1] - s[i] + 100;
}
s[n - 1] = 0;
build_sa(200);
getHeight();
int l = 0, r = n, ans = 0, mid;
while(l <= r) {
mid = (l + r) / 2;
if(check(mid)) { l = mid + 1; ans = mid; }
else r = mid - 1;
}
if(ans < 4) ans = 0;
else ans++;
printf("%d\n", ans);
}
return 0;
}
poj1743(后缀数组)的更多相关文章
- [Poj1743] [后缀数组论文例题] Musical Theme [后缀数组不可重叠最长重复子串]
利用后缀数组,先对读入整数处理str[i]=str[i+1]-str[i]+90这样可以避免负数,计算Height数组,二分答案,如果某处H<lim则将H数组分开,最终分成若干块,判断每块中是否 ...
- poj1743 后缀数组求不可重叠的重复出现的子串最长长度
Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 25348 Accepted: 8546 De ...
- Poj1743 (后缀数组)
#include<cstdio> #include<algorithm> #include<cstring> #include<cmath> using ...
- Musical Theme poj1743(后缀数组)
Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16757 Accepted: 5739 De ...
- poj1743 后缀数组, poj挂了 存个代码
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk mak ...
- 【POJ1743】Musical Theme(后缀数组)
[POJ1743]Musical Theme(后缀数组) 题面 洛谷,这题是弱化版的,\(O(n^2)dp\)能过 hihoCoder 有一点点区别 POJ 多组数据 题解 要求的是最长不可重叠重复子 ...
- POJ1743 Musical Theme —— 后缀数组 重复出现且不重叠的最长子串
题目链接:https://vjudge.net/problem/POJ-1743 Musical Theme Time Limit: 1000MS Memory Limit: 30000K Tot ...
- P2743(poj1743) Musical Themes[差分+后缀数组]
P2743 乐曲主题Musical Themes(poj1743) 然后呢这题思路其实还是蛮简单的,只是细节特别多比较恶心,忘记了差分带来的若干疏漏.因为转调的话要保证找到相同主题,只要保证一段内相对 ...
- POJ1743 Musical Theme 最长重复子串 利用后缀数组
POJ1743 题目意思是求不重叠的最长相同变化的子串,输出该长度 比如1 2 3 4 5 6 7 8 9 10,最长长度为5,因为子串1 2 3 4 5 和 6 7 8 9 10变化都一样的 思路: ...
随机推荐
- apache的/etc/httpd/conf/httpd.conf和/usr/local/apache2/conf/httpd.conf区别
一.问题 centos系统用yum安装完apache后,重启后有时会失效,然后去网上找资料,发现有的说重启命令是这样的: /etc/init.d/httpd restart 而有的呢,说重启命令应该是 ...
- python学习笔记十三:Flask demo
一.Flask简介 Flask 是一个 Python 实现的 Web 开发微框架.官网:http://flask.pocoo.org/ 二.Demo 1.代码结构 . ├── blog.py ├── ...
- ClassNotFoundException: http.nio.NHttpClientEventHandle
解决方案是打开maven仓库中的jar包看看报错的类所对应版本的类存在不存在,若不存在就换个版本的jar包
- Python全栈工程师(每周总结:1)
ParisGabriel python今年9月份将被国家纳入计算机二级资格证 先学就是鼻祖 几年后你就是大牛 Python人工智能从入门到精通 week summer: ...
- ironic baremetal rescue process
1.用户调用Nova的rescue函数 nova/virt/ironic/driver.py class IronicDriver(virt_driver.ComputeDriver): ...... ...
- PEAR DB 事务相关
1.autoCommit().commit().rollback() function autoCommit($onoff=false) 指定是否自动提交事务.有的后端数据库不支持. function ...
- HDU 4436 str2int (后缀自动机)
把所有的字符串连接起来,中间用一个未出现的字符分隔开,题意是求这个串的所有子串(中间不含分隔符)形成的数之和. 把这个串加入SAM,对所有子串进行拓扑排序,从前往后统计. 记录到达这个节点的路径个数c ...
- CentOS 7添加本地回环地址
CentOS 7添加本地回环地址 1. 临时添加ip addr add 10.10.1.1/32 dev lo:1重启失效2.永久添加cd /etc/sysconfig/network-scripts ...
- [HNOI2015][bzoj4009] 接水果 [整体二分+扫描线]
题面 传送门 思路 本题其实有在线做法......但是太难写了,退而求其次写了离线 基本思路就是,考虑一个盘子以及它能接到的所有水果 可以发现,这个水果的端点一定在这个盘子两端的"子树&qu ...
- 一种有效的压缩感知方法——读Levin论文笔记
原文链接:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.2942&rep=rep1&type=pdf 1 基 ...