题目:有n种硬币,面值分别为V1,V2,...Vn,每种都有无限多。给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值!

#include <bits/stdc++.h>

using namespace std;
int n, m, t;
const int INF = 0x3f3f3f3f;
int a[1005],Max[1005],Min[1005];
void dfs(int *d, int s)
{
for(int i=1; i<=n; i++)
if(s>=a[i] && d[s] == d[s-a[i]]+1){
printf("%d ",i);
dfs(d,s-a[i]);
break;
}
} int main()
{
cin >> n >> m;
for(int i=1;i<=n; i++) cin>>a[i];
for(int i=1;i<=m;i++){
Min[i]=INF;
Max[i]=-INF;
}
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(i >= a[j]){
Max[i] = max(Max[i-a[j]]+1,Max[i]);
Min[i] = min(Min[i-a[j]]+1,Min[i]);
}
}
}
cout << Max[m] <<' '<< Min[m] << endl;
dfs(Max,m);
cout<<endl;
dfs(Min,m);
}
/*
3 8
1 2 4
*/
#include <bits/stdc++.h>

using namespace std;
int n, m, t;
const int INF = 0x3f3f3f3f;
int a[1005],Max[1005],Min[1005],Max_[1005],Min_[1005];
void dfs(int *d, int s)
{
for(int i=1; i<=n; i++)
if(s>=a[i] && d[s] == d[s-a[i]]+1){
printf("%d ",i);
dfs(d,s-a[i]);
break;
}
}
void print(int *d, int s)
{
while(s){
printf("%d ",d[s]);
s -= a[d[s]];
}
}
int main()
{
cin >> n >> m;
for(int i=1;i<=n; i++) cin>>a[i];
for(int i=1;i<=m;i++){
Min[i]=INF;
Max[i]=-INF;
}
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(i >= a[j]){
if(Min[i] > Min[i-a[j]]+1){
Min[i] = Min[i-a[j]]+1;
Min_[i] = j;
}
if(Max[i] < Max[i-a[j]]+1){
Max[i] = Max[i-a[j]]+1;
Max_[i] = j;
}
}
}
}
cout << Max[m] <<' '<< Min[m] << endl;
//dfs(Max,m);
print(Max_,m);
cout<<endl;
//dfs(Min,m);
print(Min_,m);
}
/*
3 8
1 2 4
*/

DAG动态规划-硬币问题的更多相关文章

  1. uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...

  2. DAG模型——硬币问题

    硬币问题 有n种硬币,面值分别为V1,V2,...,Vn,每种都有无限多.给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值.1<=n<=100, 0& ...

  3. DAG 动态规划 巴比伦塔 B - The Tower of Babylon

    题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...

  4. Test 6.29 T3 小学生

    问题描述 "不错,不错!那么,准备好迎接下一道题了么?"一道白光闪过,CJK 眼前出现了 1e100 个小学生."他们中,有一些人轨了我的机子.现在,我需要你在 1S 之 ...

  5. jieba分词流程及部分源码解读(一)

    首先我们来看一下jieba分词的流程图: 结巴中文分词简介 1)支持三种分词模式: 精确模式:将句子最精确的分开,适合文本分析 全模式:句子中所有可以成词的词语都扫描出来,速度快,不能解决歧义 搜索引 ...

  6. 图的连通性--Tarjan算法

    一些概念 无向图: 连通图:在无向图中,任意两点都直接或间接连通,则称该图为连通图.(或者说:任意两点之间都存在可到达的路径) 连通分量: G的 最大连通子图 称为G的连通分量. 有向图 (ps.区别 ...

  7. DAG上动态规划

    很多动态规划问题都可以转化为DAG上的最长路,最短路,或路径计数问题. 硬币问题: 有N中硬币,面值分别为v1,v2,v3,……vn,每种都无穷多,给定非负整数S,可以选用多少个硬币,使他们的总和恰好 ...

  8. DAG 上的动态规划(训练指南—大白书)

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.矩形嵌套 题目描述:       ...

  9. DP入门(2)——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...

随机推荐

  1. Erlang中常用的类型转换[转]

    转自: http://blog.sina.com.cn/s/blog_53a5047b01018yqv.html 例子 结果 atom_to_list(hello). "hello" ...

  2. 《Cracking the Coding Interview》——第6章:智力题——题目1

    2014-03-19 06:40 题目:有20瓶药,其中19瓶装的都是1.0克的药片,只有1瓶装了1.1克的药.给你一个能称出具体克数的电子秤,只允许你称一次,怎么找出那瓶不一样的? 解法:如果药片管 ...

  3. USACO Section1.5 Prime Palindromes 解题报告

    pprime解题报告 —— icedream61 博客园(转载请注明出处)--------------------------------------------------------------- ...

  4. Python 3基础教程5-while循环语句

    本文开始介绍循环语句,和其他编程语言一样,Python中有while循环和for循环,这里介绍while循环. 语法: while 条件表达式为真: 做一些事情 实际生活中有很多这样的循环场景,这里举 ...

  5. Visual C++ 图像处理类库CxImage源代码

    说明:VC++ 图像处理类库CxImage源代码,CxImage是一个可以用于MFC 的C++类,可以打开,保存,显示,转换各种格式的图像文件,比如BMP, JPEG, GIF, PNG, TIFF, ...

  6. CentOS7 编译安装nodejs,配置环境变量记录

    每次都装,每次都查 阿里云备案了一个域名,续费了好多年,但是没钱买服务器,就挂在github上.今天收到消息:域名解析服务器不在阿里云,要被GG.只能咬牙买了个阿里云乞丐版. 所有服务都装好了,pin ...

  7. Spring 笔记(一)概念梳理

    概念 预备知识 1. POJO POJO是Plain Old Java Object的缩写,是软件开发大师Martin Fowler提出的一个概念,指的是一个普通Java类.也就说,你随便编写一个Ja ...

  8. 主流 NoSQL 数据库对比

    HBase HBase 是 Apache Hadoop 中的一个子项目,属于 bigtable 的开源版本,所实现的语言为Java(故依赖 Java SDK).HBase 依托于 Hadoop 的 H ...

  9. [洛谷P4925][1007]Scarlet的字符串不可能这么可爱

    题目大意:问字符集大小为$k$,长度为$L$的字符串,且没有长度超过$1$的回文段的个数.规定第$s(若为0则无限制)$位为$w$. 题解:懒得写了,根据是否有限制分类讨论 卡点:中途有个地方忘记取模 ...

  10. [AGC008E] Next or Nextnext [环套树森林+结论讨论]

    题面 传送门 思路 p到a 首先,本题中如果对于所有的$i$,连边$<i,p_i>$,那么可以得到一批环 那么这个题另外一点就是,可以变成连边$<i,p_{p_i}>$ 我们分 ...