1.三角形的所有端点

2.过所有三角形的端点对所有圆做切线,得到所有切点。

3.做任意两圆的外公切线,得到所有切点。

对上述所有点求凸包,标记每个点是三角形上的点还是某个圆上的点。

求完凸包后,因为所有点都是按逆时针(或顺时针)排好序的,如果相邻两点在同一圆上,那么求这段圆弧的距离,否则求这段直线的距离。最后得到所有周长。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; const double eps = 1e-;
const double PI = acos(-1.0);
const int MAXN = ; struct Point
{
double x, y;
int id; //点标号,标记是否在同一个圆上
Point() { }
Point( double x, double y ):x(x), y(y) { }
Point( double x, double y, int id ):x(x), y(y), id(id) { }
void readPoint()
{
scanf( "%lf%lf", &x, &y );
return;
}
}; struct Circle
{
Point c; //圆心坐标
double r; //半径
Circle() {}
Circle( Point c, double r ): c(c), r(r) {}
Point getPoint( double theta ) //根据极角返回圆上一点的坐标
{
return Point( c.x + cos(theta)*r, c.y + sin(theta)*r );
}
void readCircle()
{
scanf("%lf%lf%lf", &c.x, &c.y, &r );
return;
}
}; typedef Point Vector; Vector operator+( Vector A, Vector B ) //向量加
{
return Vector( A.x + B.x, A.y + B.y );
} Vector operator-( Vector A, Vector B ) //向量减
{
return Vector( A.x - B.x, A.y - B.y );
} Vector operator*( Vector A, double p ) //向量数乘
{
return Vector( A.x * p, A.y * p );
} Vector operator/( Vector A, double p ) //向量数除
{
return Vector( A.x / p, A.y / p );
} int dcmp( double x ) //控制精度
{
if ( fabs(x) < eps ) return ;
else return x < ? - : ;
} bool operator<( const Point& A, const Point& B ) //两点比较
{
return dcmp( A.x - B.x) < || ( dcmp(A.x - B.x ) == && dcmp( A.y - B.y ) < );
} bool operator>( const Point& A, const Point& B ) //两点比较
{
return dcmp( A.x - B.x) > || ( dcmp(A.x - B.x ) == && dcmp( A.y - B.y ) > );
} bool operator==( const Point& a, const Point& b ) //两点相等
{
return dcmp( a.x - b.x ) == && dcmp( a.y - b.y ) == ;
} double Cross( Vector A, Vector B ) //向量叉积
{
return A.x * B.y - A.y * B.x;
} double PointDis( Point a, Point b ) //两点距离的平方
{
return (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y);
} //求凸包,graham算法,O(nlogn),返回凸包点的个数
int graham( Point *p, int n, Point *ch )
{
if ( n <= ) return ;
int top = ;
sort( p, p + n ); ch[ top ] = p[];
ch[ ++top ] = p[];
ch[ ++top ] = p[]; top = ; for ( int i = ; i < n; ++i )
{
while ( top && dcmp( Cross( ch[top] - ch[top - ], p[i] - ch[top - ] ) ) <= ) --top;
ch[++top] = p[i];
}
int len = top;
ch[++top] = p[n - ];
for ( int i = n - ; i >= ; --i )
{
while ( top > len && dcmp( Cross( ch[top] - ch[top - ], p[i] - ch[top - ] ) ) <= ) --top;
ch[++top] = p[i];
}
return top;
} //过定点做圆的切线,得到切点,返回切点个数
//tps保存切点坐标
int getTangentPoints( Point p, Circle C, Point *tps )
{
int cnt = ; double dis = sqrt( PointDis( p, C.c ) );
int aa = dcmp( dis - C.r );
if ( aa < ) return ; //点在圆内
else if ( aa == ) //点在圆上,该点就是切点
{
tps[cnt] = p;
++cnt;
return cnt;
} //点在圆外,有两个切点
double base = atan2( p.y - C.c.y, p.x - C.c.x );
double ang = acos( C.r / dis );
//printf( "base = %f ang=%f\n", base, ang );
//printf( "base-ang=%f base+ang=%f \n", base - ang, base + ang ); tps[cnt] = C.getPoint( base - ang ), ++cnt;
tps[cnt] = C.getPoint( base + ang ), ++cnt; return cnt;
} //求两圆外公切线切点,返回切线个数
//p是圆c2在圆c1上的切点
int makeCircle( Circle c1, Circle c2, Point *p )
{
int cnt = ;
double d = sqrt( PointDis(c1.c, c2.c) ), dr = c1.r - c2.r;
double b = acos(dr / d);
double a = atan2( c2.c.y - c1.c.y, c2.c.x - c1.c.x );
double a1 = a - b, a2 = a + b;
p[cnt++] = Point(cos(a1) * c1.r, sin(a1) * c1.r) + c1.c;
p[cnt++] = Point(cos(a2) * c1.r, sin(a2) * c1.r) + c1.c;
return cnt;
} double DisOnCircle( Point a, Point b, Circle c ) //求圆上一段弧长
{
Point o = c.c;
double A = sqrt( PointDis( o, a ) );
double B = sqrt( PointDis( o, b ) );
double C = sqrt( PointDis( a, b ) );
double alpha = acos( ( A*A + B*B - C*C ) / ( 2.0*A*B ) );
if ( dcmp( Cross( o-a, o-b ) ) < ) return alpha * c.r;
else return ( 2.0*PI - alpha ) * c.r;
} /**********************以上模板**********************/ int cntC, cntT; //圆的个数,三角形的个数
Circle yuan[MAXN]; //所有圆
Point PP[]; //所有点
Point tubao[]; //凸包
int totPP; //点总数 void showP( Point *p, int nn )
{
printf( "allP = %d\n", nn );
for ( int i = ; i < nn; ++i )
printf("%f %f\n", p[i].x, p[i].y );
puts("-------------------------");
return;
} int main()
{
//freopen( "10022.in", "r", stdin );
//freopen( "s.out", "w", stdout );
while ( scanf( "%d%d", &cntC, &cntT ) == )
{
totPP = ;
for ( int i = ; i < cntC; ++i )
yuan[i].readCircle();
for ( int i = ; i < cntT; ++i )
{
for ( int j = ; j < ; ++j )
{
PP[totPP].readPoint();
PP[totPP].id = -(totPP+);
++totPP;
}
} if ( cntC == && cntT == )
{
printf("%.6f\n", 2.0 * PI * yuan[].r );
continue;
} int pretot = totPP;
//求两圆的外切点
for ( int i = ; i < cntC; ++i )
for ( int j = i + ; j < cntC; ++j )
{
Point PonA[], PonB[];
makeCircle( yuan[i], yuan[j], PonA );
int ans = makeCircle( yuan[j], yuan[i], PonB );
for ( int k = ; k < ans; ++k )
{
PonA[k].id = i;
PonB[k].id = j;
PP[totPP++] = PonA[k];
PP[totPP++] = PonB[k];
}
} //求所有点与所有圆的切点
for ( int i = ; i < pretot; ++i )
{
for ( int j = ; j < cntC; ++j )
{
Point qiedian[];
int ans = getTangentPoints( PP[i], yuan[j], qiedian );
for ( int k = ; k < ans; ++k )
{
qiedian[k].id = j;
PP[totPP++] = qiedian[k];
}
}
} //showP( PP, totPP );
int cntBao = graham( PP, totPP, tubao );
//puts("*********");
//showP( tubao, cntBao );
double girth = 0.0;
tubao[cntBao] = tubao[]; for ( int i = ; i <= cntBao; ++i )
{
if ( tubao[i].id == tubao[i - ].id ) //如果两点在同一个圆上
girth += DisOnCircle( tubao[i], tubao[i - ], yuan[ tubao[i].id ] );
else
girth += sqrt( PointDis( tubao[i], tubao[i - ] ) ); } printf( "%.5lf\n", girth );
}
return ;
}

HDU 4667 Building Fence 计算几何 凸包+圆的更多相关文章

  1. HDU 4667 Building Fence(求凸包的周长)

    A - Building Fence Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u ...

  2. hdu 4667 Building Fence < 计算几何模板>

    //大白p263 #include <cmath> #include <cstdio> #include <cstring> #include <string ...

  3. HDU 4667 Building Fence(2013多校7 1002题 计算几何,凸包,圆和三角形)

    Building Fence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)To ...

  4. HDU 4667 Building Fence

    题意: 给n个圆和m个三角形,且保证互不相交,用一个篱笆把他们围起来,求最短的周长是多少. 做法:--水过... 把一个圆均匀的切割成500个点,然后求凸包. 注意:求完凸包,在求周长的时候记得要把圆 ...

  5. 4667 Building Fence 解题报告

    题意:给n个圆和m个三角形,且保证互不相交,用一个篱笆把他们围起来,求最短的周长是多少. 解法1:在每个圆上均匀的取2000个点,求凸包周长就可以水过. 解法2:求出所有圆之间的外公切线的切点,以及过 ...

  6. [hdu4667]Building Fence 计算几何 瞎瘠薄搞

    大致题意: 给出n个圆和m个三角形,求最小的的,能将所有图形覆盖的图形的周长. 正解为求所有三角形顶点与圆的切点以及圆和圆的切点构造凸包,再求路径. 因为要求结果误差<=1e-3 所以 我们可以 ...

  7. HDU 5130 Signal Interference(计算几何 + 模板)

    HDU 5130 Signal Interference(计算几何 + 模板) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5130 Descripti ...

  8. HDU 5033 Building(单调栈)

    HDU 5033 Building(单调栈) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5033 Description Once upon a ti ...

  9. HDU—— 5159 Building Blocks

    Problem Description After enjoying the movie,LeLe went home alone. LeLe decided to build blocks. LeL ...

随机推荐

  1. lintcode 77.Longest Common Subsequence(最长公共子序列)、79. Longest Common Substring(最长公共子串)

    Longest Common Subsequence最长公共子序列: 每个dp位置表示的是第i.j个字母的最长公共子序列 class Solution { public: int findLength ...

  2. MAC os x 系统java开发环境搭建教程

    https://jingyan.baidu.com/article/3d69c55147a3baf0cf02d7ca.html

  3. MySQL中的if和case语句使用总结

    create table test( id int primary key auto_increment, name ), sex int ) ),(),(),() ,'男','女') from te ...

  4. 八数码(map版)

    八数码 map真是个奇技淫巧好东西 可以十分简单的实现hash,当然速度就不敢保证了 因为九位数不算很大,完全可以用int存下,所以便将八数码的图像转换成一个int型的数字 #include<i ...

  5. js实现弹窗一个ip在24小时只弹出一次的代码

    function cookieGO(name) { var today = new Date(); var expires = new Date(); expires.setTime(today.ge ...

  6. jquery 筛选元素 (2)

    .add() 创建一个新的对象,元素添加到匹配的元素集合中. .add(selector) selector 一个字符串表示的选择器表达式.找到更多的元素添加到匹配的元素集合. $("p&q ...

  7. WPF与Silverlight对比

    1.WPF中控件的肤色可以直接:telerik:StyleManager.Theme=”XXXXX”,不用再导入肤色的dll包.可Silverlight使用系统肤色时,要导入肤色的dll包. WPF引 ...

  8. HTML基本教程,及一些基本常用标签。

    HTML基本结构,及常用标签 <DOCTYPE html> <html> <head> <meta charset="UTF-8" /&g ...

  9. css设置内容超出后显示省略号

    1.使用overflow: hidden把超出的内容进行隐藏: 2.然后使用white-space: nowrap设置内容不换行: 3.最后使用text-overflow: ellipsis设置超出内 ...

  10. Sublime package control错误:There are no packages available for installation

    查了很多资料都没有解决. 改host---无效 复制一个文件的什么的,我看到版本比我的旧,就没有用 终于最后一个解决了.最终解决方案 解决: 更新下Package Control就好了: prefer ...