CodeForces-1061D TV Shows
题目链接
https://vjudge.net/problem/CodeForces-1061D
题面
Description
There are nn TV shows you want to watch. Suppose the whole time is split into equal parts called "minutes". The i-th of the shows is going from li-th to ri-th minute, both ends inclusive.
You need a TV to watch a TV show and you can't watch two TV shows which air at the same time on the same TV, so it is possible you will need multiple TVs in some minutes. For example, if segments [li,ri] and [lj,rj] intersect, then shows i and j can't be watched simultaneously on one TV.
Once you start watching a show on some TV it is not possible to "move" it to another TV (since it would be too distracting), or to watch another show on the same TV until this show ends.
There is a TV Rental shop near you. It rents a TV for xx rupees, and charges y (y<x) rupees for every extra minute you keep the TV. So in order to rent a TV for minutes [a;b] you will need to pay x+y⋅(b−a)
You can assume, that taking and returning of the TV doesn't take any time and doesn't distract from watching other TV shows. Find the minimum possible cost to view all shows. Since this value could be too large, print it modulo \(10^9+7\).
Input
The first line contains integers n, x and y (\(1≤n≤10^5 , 1≤y<x≤10^9\)) — the number of TV shows, the cost to rent a TV for the first minute and the cost to rent a TV for every subsequent minute.
Each of the next n lines contains two integers li and ri (\(1≤li≤ri≤10^9\)) denoting the start and the end minute of the i-th TV show.
Output
Print exactly one integer — the minimum cost to view all the shows taken modulo 109+7109+7.
Examples
Input
5 4 3
1 2
4 10
2 4
10 11
5 9
Output
60
Input
6 3 2
8 20
6 22
4 15
20 28
17 25
20 27
Output
142
Input
2 1000000000 2
1 2
2 3
Output
999999997
Note
In the first example, the optimal strategy would be to rent 33 TVs to watch:
- Show [1,2] on the first TV,
- Show [4,10] on the second TV,
- Shows [2,4],[5,9],[10,11] on the third TV.
This way the cost for the first TV is 4+3⋅(2−1)=7, for the second is 4+3⋅(10−4)=22 and for the third is 4+3⋅(11−2)=31, which gives 6060 int total.
In the second example, it is optimal watch each show on a new TV.
In third example, it is optimal to watch both shows on a new TV. Note that the answer is to be printed modulo \(10^9+7\)
题意
给定 n 个电视节目和两个参数 x,y。你想要看全部的电视节目,但是同一个电视机同一个时刻只能播放一个电视节目,所以你只能多租赁电视机。在时间 [l,r] 租赁一台电视机的花费是 x + y (r−l)。一台电视机不可以在节目没有播放完时中断播放,播放时间包括r,也就是说如果一个节目在r时结束,另一个节目在r时开始时,这台电视机不能给刚开始的节目用。求最小花费。答案对 1e9+7 取模。
题解
首先我们把电视节目排序,排序按左端点小的在前,左端点相同时按右端点小的在前,因为靠前的节目肯定要先看,然后我们用一个multiset维护当前已经有的电视机的使用结束时间,首先对于第一个节目,此时还没有电视机,肯定要先买一台电视机,加上相应的花费,然后这台电视机在\(r_1\)时使用结束,set中有一台电视机的信息
然后从2到n开始循环,每次循环找到一台电视机的使用结束时间比这个节目的开始时间早,离这个节目开始最近的电视,没有的话就要再租一台电视机,如果有的话,就要判断一下,看是使用已有的电视机比较便宜还是再租一台比较便宜,如果使用已有电视机比较便宜的话,那么就要把这台电视机的结束时间更新到这次节目的结束时间,如果再租一台比较便宜,就要新加入一台使用结束时间在这次节目结束时间的电视机,同时计算花费,这样一直贪心选取计算答案即可。
为什么要这么贪心呢,因为如果在一个节目开始时间之前有多台电视机可以继续使用的话,结束时间更早的电视机肯定不如结束时间较晚的电视机优,因为它要花费更多的单位时间的租金。
至于找到结束时间最近的电视机,就直接使用\(lower\_bound\)即可,找到第一个大于等于的,再-1就是比它小的。
代码有点丑
AC代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <set>
#define N 100050
using namespace std;
typedef long long ll;
const int p = (int)1e9 + 7;
struct node {
ll l, r;
bool operator < (const node &b) const {
if (l == b.l) return r < b.r;
else return l < b.l;
}
} a[N];
int main() {
multiset<ll> s;
ll n, x, y;
scanf("%lld%lld%lld", &n, &x, &y);
for (int i = 1; i <= n; i++) {
scanf("%lld%lld", &a[i].l, &a[i].r);
}
sort (a + 1, a + n + 1);
s.insert(a[1].r);
multiset<ll>::iterator it;
ll ans = (x + y * (a[1].r - a[1].l) % p) % p;
for (int i = 2; i <= n; i++) {
it = s.lower_bound(a[i].l);
if (it == s.begin()) {
ans = (ans + x + y * (a[i].r - a[i].l) % p) % p;
s.insert(a[i].r);
}
else {
it--;
while (a[i].l == *it && it != s.begin()) {
it--;
}
if (*it == a[i].l) {
ans = (ans + x + y * (a[i].r - a[i].l) % p) % p;
}
else {
if ((a[i].l - *it) * y < x) {
ans = (ans + (a[i].r - *it) * y % p) % p;
s.erase(it);
}
else {
ans = (ans + x + (a[i].r - a[i].l) * y % p) % p;
}
}
s.insert(a[i].r);
}
}
cout << ans % p << endl;
return 0;
}
CodeForces-1061D TV Shows的更多相关文章
- Codeforces Round #523 (Div. 2) D. TV Shows
传送门 https://www.cnblogs.com/violet-acmer/p/10005351.html 题意: 有n个节目,每个节目都有个开始时间和结束时间. 定义x,y分别为租电视需要的花 ...
- Codeforces Round #523 (Div. 2) D. TV Shows 模拟(多重集 先把所有区间加入多重集合)+贪心+二分
题意:给出n个电视节目的起始和结束时间 并且租一台电视需要x +y*(b-a) [a,b]为时段 问完整看完电视节目的最小花费是多少 思路:贪心的思想 情况1 如果新租一台电视的花费<=在空 ...
- 【codeforces】【Round#523D】TV shows
题意:n个节目,每个节目的播放时间为[li,ri],你需要选择一些电视机全部播放这些节目,一台电视机不能同时播放多个节目,选择一个新的电视机代价为x , 如果某台电视机的使用时间为[Li,Ri]需要付 ...
- 【贪心】【CF1061D】 TV Shows
Description 给定 \(n\) 个电视节目和两个参数 \(x,y\).你想要看全部的电视节目,但是同一个电视机同一个时刻只能播放一个电视节目,所以你只能多租赁电视机.在时间 \([l,r]\ ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)
链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...
- CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)
Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!&qu ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法
B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...
- Codeforces Round #523 (Div. 2)
Codeforces Round #523 (Div. 2) 题目一览表 来源 考察知识点 完成时间 A Coins cf 贪心(签到题) 2018.11.23 B Views Matter cf 思 ...
- 10 Best TV Series Based On Hacking And Technology
Technology is rapidly becoming the key point in human lives. Here we have discussed top TV shows whi ...
随机推荐
- 2017.11.18 C语言的算法分析题目
算法分析 1. 选定实验题目,仔细阅读实验要求,设计好输入输出,按照分治法的思想构思算法,选取合适的存储结构实现应用的操作. 2. 设计的结果应在Visual C++ 实验环境下实现并进行调试.(也可 ...
- laravel 去掉index.php伪静态
1,首先,让apache服务器支持rewrite 可以在apache配置文件中定义rewrite规则,是全局的,无论哪个应用都实用 //httpd.config Listen 80 RewriteEn ...
- JDBC-Hibernate-Mybatis
JDBC sql语句和Java代码混在了一起 Hibernate 自动生成sql语句 Mybatis 将sql语句写在xml文件中,使用时动态生成
- 网际协议 IP
网际协议 网际协议(internet protocol),简称IP; 概念:TCP/IP网络体系结构中网际层的协议.用以提供无连接的数据服务. 1.IP地址的概念及组成 概念:IP地址就是用来唯一标 ...
- Spring的jdbcTemplate 与原始jdbc 整合c3p0的DBUtils 及Hibernate 对比 Spring配置文件生成约束的菜单方法
以User为操作对象 package com.swift.jdbc; public class User { private Long user_id; private String user_cod ...
- 在centos7云服务器上搭建Apache服务器并访问到你的网站
使用X-shell ssh安全连接到云服务器 https://mail.qq.com/cgi-bin/mail_spam?action=check_link&url=https://www.n ...
- Problem 1004-2017 ACM/ICPC Asia Regional Shenyang Online
题目来源:array array array Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- HDU.2111 Saving HDU(贪心)
题目来源:Saving HDU 题意分析: XHD有个容量为v的口袋,有n个宝贝,每种宝贝的价值不一样,每种宝贝单位体积的价格也不一样,宝贝可以分割,分割后的价值和对应的体积成正比.求XHD最多能取回 ...
- MySQL巧用FIND_IN_SET和GROUP_CONCAT函数减少Java代码量
数据库表简介:物品表 `id` int(11) '物品id,唯一标识', `name` varchar(255) '物品名称', `level` int(11) '物品类别等级,礼品包为最高级1,类 ...
- Mysql_Binary_Install_Scripts(采用二进制方式安装)
1.1 MYSQL实现代码 #!/bin/bash ######################################## #auth:wolf_dreams #time:2018-1 ...