cnn softmax regression bp求导
内容来自ufldl,代码参考自tornadomeet的cnnCost.m
1.Forward Propagation
convolvedFeatures = cnnConvolve(filterDim, numFilters, images, Wc, bc); %对于第一个箭头
activationsPooled = cnnPool(poolDim, convolvedFeatures);%对应第二个箭头 %对应第3个箭头,即平铺开
activationsPooled = reshape(activationsPooled,[],numImages); %开始计算softmax后属于各类的概率
probs = zeros(numClasses,numImages); %Wd=(numClasses,hiddenSize),probs的每一列代表一个输出
%M=Wd*ah+bd
M = Wd*activationsPooled+repmat(bd,[1,numImages]);
%这步可以省略,可以这么做的原因是 exp(a+b)=exp(a)exp(b)
M = bsxfun(@minus,M,max(M,[],1));
%M=exp(Wd*ah+bd)
M = exp(M);
%normalize
probs = bsxfun(@rdivide, M, sum(M));
2.Back propagation
% 首先需要把labels弄成one-hot编码
%对应图片中的I
groundTruth = full(sparse(labels, 1:numImages, 1)); %P-I
delta_d = -(groundTruth-probs);
%ah(P-I) ,不同处为后面加上了正规项的导数
Wd_grad = (1./numImages)*delta_d*activationsPooled'+lambda*Wd;
bd_grad = (1./numImages)*sum(delta_d,2); %注意这里是要求和 %对应图中reshape右边的 J对ah求导
delta_s = Wd'*delta_d;
delta_s=reshape(delta_s,outputDim,outputDim,numFilters,numImages); %对应途中 1/4,delta_s的每个分量,都扩展为4个
for i=1:numImages
for j=1:numFilters
delta_c(:,:,j,i) = (1./poolDim^2)*kron(squeeze(delta_s(:,:,j,i)), ones(poolDim));
end
end
%对于左下方,但此时ximage还没有乘上去
delta_c = convolvedFeatures.*(1-convolvedFeatures).*delta_c; for i=1:numFilters
Wc_i = zeros(filterDim,filterDim);
for j=1:numImages
%此处conv2非常巧妙
Wc_i = Wc_i+conv2(squeeze(images(:,:,j)),rot90(squeeze(delta_c(:,:,i,j)),2),'valid');
end
% Wc_i = convn(images,rot180(squeeze(delta_c(:,:,i,:))),'valid');
% add penalize
Wc_grad(:,:,i) = (1./numImages)*Wc_i+lambda*Wc(:,:,i); bc_i = delta_c(:,:,i,:);
bc_i = bc_i(:);
bc_grad(i) = sum(bc_i)/numImages;
end
上面conv2的正确性,可以用下面方法验证
A=rand(9,9);
B=rand(3,3);
c1=conv2(A,B,'valid'); B=zeros(3);
for i=1:7
for j=1:7
B=B+(A(i:i+2,j:j+2)*c1(i,j));
end
end
%看到B和conv2结果相同
conv2(A,rot90(c1,2),'valid')
B
cnn softmax regression bp求导的更多相关文章
- 【机器学习基础】对 softmax 和 cross-entropy 求导
目录 符号定义 对 softmax 求导 对 cross-entropy 求导 对 softmax 和 cross-entropy 一起求导 References 在论文中看到对 softmax 和 ...
- 【机器学习】BP & softmax求导
目录 一.BP原理及求导 二.softmax及求导 一.BP 1.为什么沿梯度方向是上升最快方向 根据泰勒公式对f(x)在x0处展开,得到f(x) ~ f(x0) + f'(x0)(x-x0) ...
- softmax 损失函数求导过程
前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个qu ...
- 【转载】softmax的log似然代价函数(求导过程)
全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时, ...
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- Deep Learning基础--CNN的反向求导及练习
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- softmax分类器+cross entropy损失函数的求导
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...
- 前馈网络求导概论(一)·Softmax篇
Softmax是啥? Hopfield网络的能量观点 1982年的Hopfiled网络首次将统计物理学的能量观点引入到神经网络中, 将神经网络的全局最小值求解,近似认为是求解热力学系统的能量最低点(最 ...
- Deep Learning基础--Softmax求导过程
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...
随机推荐
- 正式学习React(五) Reactjs 的 PropTypes 使用方法
propTypes 使用來規範元件Props的型別與必需狀態 var Test = React.createClass({ propTypes: { // required requiredFunc: ...
- Python学习 常识+基础基础
特点: 优雅,明确,简单 领域: web网站 网络服务 系统工具和脚本 跨平台 对缩进要求严格 注释:# 动态语言:变量本身类型不固定 raw字符串与 多行字符串 raw字符串: 不需要转义字 ...
- Delphi 线程Timer (TThreadTimer)
delphi 自带的Timer控件,使用方便,但它的 OnTimer 事件是在主线程中引发的. 如果在事件中执行较耗时的代码,会引起主界面假死.故实现一个线程的Timer就有必要了. TThreadT ...
- linux scp ssh命令不用输入密码
把你的本地主机用户的ssh公匙文件复制到远程主机用户的~/.ssh/authorized_keys文件中 假设本地主机linux100,远程主机linux200 一,在linux100主机里的用户 运 ...
- hdu 1690 The Balance_母函数
题意:给你n个数,这些数可以互相加或者减,输出在范围[1,sum]里不能通过运算得出的数 思路:套母函数模版 #include <iostream> #include<cstdio& ...
- KMP算法java实现
/** * 假设现在文本串S匹配到 i 位置,模式串P匹配到 j 位置 如果j = -1,或者当前字符匹配成功(即S[i] == * P[j]),都令i++,j++,继续匹配下一个字符: 如果j != ...
- zlog
zlog源码包下载地址https://github.com/HardySimpson/zlog zlog使用手册http://blog.csdn.net/yangzhenzhen/article/de ...
- FTP的主动模式和被动模式
摘自http://blog.csdn.net/love_gaohz/article/details/50723164 http://my.oschina.net/binny/blog/17469 FT ...
- 【ThinkPHP学习】ThinkPHP自己主动转义存储富文本编辑器内容导致读取出错
RT. ThinkPHP的conf文件里的Convention.php有一个配置选项 'DEFAULT_FILTER' => 'htmlspecialchars', // 默认參数过滤方法 用于 ...
- RSA不对称加密,公钥加密私钥解密,私钥加密公钥解密
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作. RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一 ...