A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91  99.

Find the largest palindrome made from the product of two 3-digit numbers.

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool palindromic(int n) //判断一个整数是否为回文数
{
char s[];
sprintf(s,"%d",n); //将整数n保存在字符数组s中
int i,len;
len=strlen(s);
for(i=; i<len/; i++)
{
if(s[i]!=s[len-i-])
return false;
}
return true;
} bool have_the_factor(int n) //判断是否含有两个3位数的因数
{
int s=;
int r,b;
while(s>)
{
if((n%s)== && ((n/s)> && (n/s)<))
return true;
s--;
}
return false;
} int main()
{
int i=;
while(i>)
{
if(palindromic(i) && have_the_factor(i))
{
printf("%d\n",i);
break;
}
i--;
}
return ;
}
Answer:
906609

(Problem 4)Largest palindrome product的更多相关文章

  1. (Problem 3)Largest prime factor

    The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 60085 ...

  2. 【欧拉计划4】Largest palindrome product

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/1371281760.html 原创:[欧 ...

  3. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  4. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  5. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  6. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. Object-c KVC的使用和举例

    如果我们的对象需要使用KVC,必须符合object-c的非正式协议NSKeyValueCoding.我们可以简单的来理解KVC,即所有符合KVC机制的对象都看成一个字典(NSDictionary),对 ...

  2. 基于Visual C++2013拆解世界五百强面试题--题6-double类型逆序

    请设计一个函数,不许用到字符串函数,用数学运算,将double类型数据转换,例如123.456转换成654.321 首先想到依次提取他的每一个位数,然后进行运算,移动每一位数到相应位置,结果相加就能逆 ...

  3. AndroidStudio项目移植到Eclipse

    原文件结构: 在AndroidStudio中 main目录对应eclipse中的src目录 可以看看每个文件夹下的目录 没有src或者main这些文件夹的都可以删掉 我这里只有app下的东西是需要留着 ...

  4. Sightseeing Cows(最优比率环)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8915   Accepted: 3000 ...

  5. SVN 让项目某些文件不受版本控制

    @echo On @Rem 删除SVN版本控制目录 @PROMPT [Com] @for /r . %%a in (.) do @if exist "%%a\.svn" rd /s ...

  6. tomcat的webappclassloader中一个奇怪的异常信息

    假设一个应用抛出大量的Class not found信息,一般你会怀疑包冲突.但是tomcat的webappclassloader却有这种问题: 假设一个应用公布出现故障, webappclasslo ...

  7. Suricata, to 10Gbps and beyond(X86架构)

    Introduction Since the beginning of July 2012, OISF team is able to access to a server where one int ...

  8. [ACM] POJ 3273 Monthly Expense (二分解决最小化最大值)

    Monthly Expense Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 14158   Accepted: 5697 ...

  9. OutLook 2010 收件箱子文件夹收到新邮件时没有桌面通知

    开始---规则----管理规则和通知 规则和通知---电子邮件规则---批量选择账号---更改规则---在新邮件通知和窗口显示(选中)---确定 录入通知邮件消息---确定 效果如下:

  10. [译]Stairway to Integration Services Level 3 - 增量导入数据

    让我们打开之前的项目:My_First_SSIS_Project_After_Step_2.zip 之前项目中我们已经向dbo.contact 导入了19972行,如果再次执行包会重复导入,让我们来解 ...