Machine Learning #Lab1# Linear Regression
Machine Learning Lab1
打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来~
预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞定.)
-----------------------------------------------------------------------------------------------------------------------------------
实验内容: 线性拟合
实验材料:http://download.csdn.net/detail/u011368821/8114541
-----------------------------------------------------------------------------------------------------------------------------------
线性拟合非常easy,也非常有用。非常酷~
identity matrix——单位矩阵
实验的风格和国外的实验风格还真是一致啊~就是一个个补全待实现功能的函数
Linear regression with one variable
问题背景:
In this part of this exercise, you will implement linear regression with one variable to predict profits for a food truck. Suppose you are the CEO of a restaurant franchise and are considering different cities for opening
a new outlet. The chain already has trucks in various cities and you have data for profits and populations from the cities. You would like to use this data to help you select which city to expand to next.
如果你是某餐饮公司的CEO,手上有份数据,关于各个人口量不同的城市。以及你在该城市开店的盈利情况.依据这些数据,为一次开店提供一个方案.
实验的目的,如图,对于给定的数据(实质上是一个单变量函数),怎么确定一个一次函数。最好的去拟合这些散点
一開始实验要求返回一个5*5的单位矩阵。两种办法
1.直接调用eye()函数
2.自己写一个两层for循环,去初始化一个5*5的矩阵
以下我给出了两种方法的实现
function A = warmUpExercise()
%WARMUPEXERCISE Example function in octave
% A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix A = eye(5);
% ============= YOUR CODE HERE ==============
% Instructions: Return the 5x5 identity matrix
% In octave, we return values by defining which variables
% represent the return values (at the top of the file)
% and then set them accordingly.
%
% for row = 1:5
% for col = 1:5
% if row == col
% A(row,col) = 1;
% else
% A(row,col) = 0;
% end
% end
% end
%
% =========================================== end
plotData的实现:依照Instructions的要求来就是了
function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
% population and profit. % ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the
% "figure" and "plot" commands. Set the axes labels using
% the "xlabel" and "ylabel" commands. Assume the
% population and revenue data have been passed in
% as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
% appear as red crosses. Furthermore, you can make the
% markers larger by using plot(..., 'rx', 'MarkerSize', 10); figure; % open a new figure window
plot(x,y,'rx','MarkerSize',10);
ylabel('Profit in $10,000s');
xlabel('Population of City in 10,000s'); % ============================================================ end
以上都是比較简单的matlab&Octave有用方法
这里是介绍怎么计算cost function。
怎么评价拟合的程度好坏呢?
当拟合的值h和实际值y各个点的差值的平方趋向于0的时候,我们觉得拟合的好(由于这样y和h越是靠近)
注意。这里h是大小和y一致的矩阵,而theta是一个二维列向量初始的theta = [0 ; 0];(再次强调,列向量)
那问题又来了。初始的theta是[0;0],那么怎么调整这里的斜率和截距(theta)呢?
假设theta大了。那么表现为h - y大于0,于是alpha(就是一个常数,用作刻画精度)乘以这个(h-y).会得到一个正数,于是theta 减去这个数,就变变小
同理theta小了, 会减去一个负数(由于h - y 小于0)。那么theta会变大
(强调,这里使用的theta变大变小。均针对于theta 矩阵内的某一元素而言,并不是指整个矩阵)
那么仅仅要迭代的次数住够多。会得到一个非常恰当的theta使得cost function的值足够小(其实,在我们的实验中,迭代了1500次,使得cost function最小达到了0)。
接着要实现函数computeCost。这里提供了“两种方法”。实质上还是一样的。方法一用的传统的计算方法,而方法二则是基于矩阵进行计算(“优雅”得多)
function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0; % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. % % Implementation method one:
% temp = (X*theta-y).^2;
% J = sum(temp(:))./(2*m); % Implementation method two:
temp = (X*theta - y);
J = (temp'*temp)./(2*m);
% ========================================================================= end
接着完毕gradientDescent函数就可以,这里要对矩阵的运算相当熟悉...
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
% temp = (X'*(X*theta -y))./m;
theta = theta - (alpha*(temp)); % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end
OK! 最后会得到最佳的theta.蓝色的直线是我们的结果.近似的我们能够觉得人口越大的城市,盈利越多。
这里仅分析了盈利多少和人口的关系。有兴趣的话,我们还能够研究盈利的稳定性,利用方差去刻画~这里不再多做讨论.
接着已知最优theta的情况下,又分析了在一定范围内cost function值的变化,越是远离最长处。cost function的值就越大,拟合的效果就越差。
Linear regression with multiple variables
多变量的线性拟合.
换汤不换药的。熟悉矩阵运算。基本上不须要修改代码就可以(矩阵的魅力啊~)
问题的背景:
The file ex1data2.txt contains a training set of housing prices in Portland, Oregon. The first column is the size of the house (in square feet), the second column is the number of bedrooms, and the third column is the price
of the house.
关于房间大小。房子大小,房价之间的关系,数据来源于Portland 和Oregon。
x = [2104 3], y = 399900 房子大小是2104,有3个卧室。房价是399900,其它的同理
x = [1600 3], y = 329900
x = [2400 3], y = 369000
x = [1416 2], y = 232000
x = [3000 4], y = 539900
... ...
为什么要进行归一化处理
By looking at the values, note that house sizes are about 1000 times the number of bedrooms. When features differ by orders of magnitude, first performing feature scaling can make gradient descent converge
much more quickly.
这里不不过为了尽快收敛,并且不归一化。会bug。。
。
function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X
% FEATURENORMALIZE(X) returns a normalized version of X where
% the mean value of each feature is 0 and the standard deviation
% is 1. This is often a good preprocessing step to do when
% working with learning algorithms. % You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2)); % ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
% of the feature and subtract it from the dataset,
% storing the mean value in mu. Next, compute the
% standard deviation of each feature and divide
% each feature by it's standard deviation, storing
% the standard deviation in sigma.
%
% Note that X is a matrix where each column is a
% feature and each row is an example. You need
% to perform the normalization separately for
% each feature.
%
% Hint: You might find the 'mean' and 'std' functions useful.
% for temp = 1:size(X,2)
mu(temp) = mean(X(:,temp));
sigma(temp) = std(X(:,temp));
X_norm(:,temp) = (X_norm(:,temp) - mu(temp))./sigma(temp);
end % ============================================================ end
computeCostMulti函数的实现
function J = computeCostMulti(X, y, theta)
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
% J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0; % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. temp = (X*theta - y);
J = (temp'*temp)./(2*m); % ========================================================================= end
gradientDescentMulti函数的实现
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
% temp = X'*(X*theta - y)./m;
theta = theta - alpha*temp; % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta); end end
会发现误差函数的输出值随着迭代次数的添加而减小的非常快
最后依据公式求解theta,这样的方法并不须要迭代。而能非常好的求得近似解(实质上还是矩阵的变换, theta*X = y 变形即得)
function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression
% NORMALEQN(X,y) computes the closed-form solution to linear
% regression using the normal equations. theta = zeros(size(X, 2), 1); % ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
% to linear regression and put the result in theta.
% % ---------------------- Sample Solution ----------------------
theta = (inv(X'*X))*X'*y;
% ------------------------------------------------------------- % ============================================================ end
Solving with normal equations...
Theta computed from the normal equations:
89597.909543
139.210674
-8738.019112
Predicted price of a 1650 sq-ft, 3 br house (using normal equations):
$91490.957664
估算出1650sq-ft大小,3个卧室。的房子须要91490左右的价格
客栈 布洛赫 丹麦 布面油画 110x70cm 私人收藏
这幅画描绘了丹麦人的生活场景。客栈,小饭馆。吃饭。画中人物衣着比較有特色,人物表情被画家绘画得非常生动。
观者能感受出画中男子不善的目光,对面两个女子目光也是窥视这个方向,让人有种不安的感觉。
他们说的什么?感觉一定不是好话。这是画家传神的技法的展现。也惊叹人物后面破旧的墙壁,逼真地让人以为这是一张照片。作者卡尔·海因里希·布洛赫(Carl Heinrich Bloch)是19世纪丹麦画家。
Machine Learning #Lab1# Linear Regression的更多相关文章
- CheeseZH: Stanford University: Machine Learning Ex1:Linear Regression
(1) How to comput the Cost function in Univirate/Multivariate Linear Regression; (2) How to comput t ...
- machine learning (2)-linear regression with one variable
machine learning- linear regression with one variable(2) Linear regression with one variable = univa ...
- 【Coursera - machine learning】 Linear regression with one variable-quiz
Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...
- ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS
ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed ...
- machine learning 之 logistic regression
整理自Adrew Ng 的 machine learning课程week3 目录: 二分类问题 模型表示 decision boundary 损失函数 多分类问题 过拟合问题和正则化 什么是过拟合 如 ...
- CheeseZH: Stanford University: Machine Learning Ex2:Logistic Regression
1. Sigmoid Function In Logisttic Regression, the hypothesis is defined as: where function g is the s ...
- Machine learning(4-Linear Regression with multiple variables )
1.Multiple features So what the form of the hypothesis should be ? For convenience, define x0=1 At t ...
- Machine learning(2-Linear regression with one variable )
1.Model representation Our Training Set [训练集]: We will start with this ''Housing price prediction'' ...
- machine learning (3)---Linear Algebra Review
Matrix Vector Multiplication 左边的矩阵向量相乘法比右边的更简洁而且计算高效 Matrix Matrix Multiplication 可以同时计算12个结果(4个房子面积 ...
随机推荐
- [Git]自译《Git版本控制管理》——1.介绍(二)_Git诞生
译者前言: 本系列译文为作者利用业余时间翻译,有些疏漏与翻译不到位的地方敬请谅解. 不过也很希望各位读者能给出中肯的建议. 方括号的注释,如[1][2]为译者注. ...
- cocos2dx进阶学习之CCTMXLayer
继承关系 CCTMXLayer -> CCSpriteBatchNode CCTMXLayer是在瓦片地图中,抽象一个层的类,它继承自CCSpriteBatchNode,也就是说它抽象了一批相同 ...
- java学习之IO对象流
//注意对象类要打标记实现Serializable接口 package com.gh; import java.io.FileInputStream; import java.io.FileNotFo ...
- Swift - 2 (?和!、结构体、类、协议、扩展、闭包)
1> 可选类型(?)和强制解包(!) 在swift中,可选类型(?) 其根源是一个 枚举型,里面有 None 和 Some 两种类型.其实所谓的 nil 就是 Optional.None , 非 ...
- NYoj-街区最短路径问题
街区最短路径问题 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描写叙述 一个街区有非常多住户,街区的街道仅仅能为东西.南北两种方向. 住户仅仅能够沿着街道行走. 各个街道之 ...
- 使用SourceTree Push 出现 POST git-receive-pack (chunked) 的解决方法
在使用SourceTree上传资料的时候,遇到 POST git-receive-pack (chunked) 从 stackoverflow 看到这样一则 This is a bug in Git; ...
- VC++共享数据段实现进程之间共享数据
当我写了一个程序,我希望当这个程序同时运行两遍的时候,两个进程之间能共享一些全局变量,怎么办呢?很简单,使用VC\VC++的共享数据段.; #pragma data_seg()//恢复到正常段继续编程 ...
- html中事件处理中的this和event对象
在用js编写页面事件处理代码时,会经常涉及到this和event对象,但有时在采用不同的事件处理,尤其是在与自定义的对象关联时,这些对象的指向变的有些复杂. 本文来详细介绍下各种场景下 这些对象 真正 ...
- 【引用】Linux 内核驱动--多点触摸接口
本文转载自James<Linux 内核驱动--多点触摸接口> 译自:linux-2.6.31.14\Documentation\input\multi-touch-protocol.t ...
- win7删除桌面文件需要刷新才会消失(2种解决方法)
有没有遇到过这种情况,删除桌面文件没有效果,要点右键的刷新删除过的文件才会在桌面上消失!解决方法有两种: 第一种方法 点击"开始→运行",在对话框中输入"regedit& ...