Time Limit:1000MS    Memory Limit:65536KB    64bit IO Format:%I64d & %I64u

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral
wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates
started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.


Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they
were placed. The i-th line among the n lines contains two integer numbers l
i
and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l
i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l
i, l i+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.




The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

開始没有离散化处理导致内存超了,离散化就过了。。。。

/*************************************************************************
> File Name: B.cpp
> Author: acvcla
> QQ: 1319132622
> Mail: acvcla@gmail.com
> Created Time: 2014年10月04日 星期六 16时24分37秒
************************************************************************/
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<cstdlib>
#include<ctime>
#include<set>
#include<math.h>
using namespace std;
typedef long long LL;
const int maxn = 1e5 + 10;
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define pb push_back
short int col[maxn<<3];
bool v[maxn<<2];
int ll[maxn],rr[maxn],ttp[maxn<<3];
void push_down(int o){
if(col[o]!=-1){
col[o<<1]=col[o<<1|1]=col[o];
col[o]=-1;
}
}
void push_up(int o){
if(col[o<<1]==col[o<<1|1])col[o]=col[o<<1];
else col[o]=-1;
}
int ql,qr,x;
void built(int o,int l,int r)
{
col[o]=0;
if(l==r)return;
int M=(l+r)>>1;
built(o<<1,l,M);
built(o<<1|1,M+1,r);
}
void Modify(int o,int l,int r){
if(ql<=l&&qr>=r){
col[o]=x;
return;
}
int M=(l+r)>>1;
push_down(o);
if(ql<=M)Modify(o<<1,l,M);
if(qr>M)Modify(o<<1|1,M+1,r);
push_up(o);
}
int query(int o,int l,int r){
if(col[o]!=-1){
if(!col[o]||v[col[o]])return 0;
else{
v[col[o]]=true;
return 1;
}
}
if(l==r)return 0;
int M=(l+r)>>1;
push_down(o);
return query(o<<1,l,M)+query(o<<1|1,M+1,r);
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(0);
int n,T;cin>>T;
while(T--){
x=0;
cin>>n;
memset(v,0,sizeof v);
int cnt=0;
for(int i=1;i<=n;i++){
cin>>ll[i]>>rr[i];
ttp[++cnt]=ll[i];
ttp[++cnt]=rr[i];
}
sort(ttp+1,ttp+1+cnt);
cnt=unique(ttp+1,ttp+1+cnt)-ttp;
int t=cnt;
for(int i=1;i<t;i++)
{
if(ttp[i]+1!=ttp[i+1])ttp[++cnt]=ttp[i]+1;
}
sort(ttp+1,ttp+1+cnt);
built(1,1,cnt);
for(int i=1;i<=n;i++){
x=i;
ql=lower_bound(ttp+1,ttp+1+cnt,ll[i])-ttp;
qr=lower_bound(ttp+1,ttp+1+cnt,rr[i])-ttp;
Modify(1,1,cnt);
}
cout<<query(1,1,cnt)<<endl;
}
return 0;
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

POJ 2528 QAQ段树+分离的更多相关文章

  1. poj 2528 (线段树+离散化)

    poj 2528 For each input data set print the number of visible posters after all the posters are place ...

  2. hdu4288 Coder(段树+分离)

    主题链接: huangjing 题意: 题目中给了三个操作 1:add x 就是把x插进去  2:delete x 就是把x删除 3:sum 就是求下标%5=3的元素的和. 另一个条件是插入和删除最后 ...

  3. poj 2528 (线段树+特殊离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 51098   Accepted: 14788 ...

  4. POJ 2528(线段树+离散化+特殊离散化)网上博客很少有人真正写对!!! 是POJ数据太水...

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  5. D - Mayor's posters POJ - 2528 离散化+线段树 区间修改单点查询

    题意 贴海报 最后可以看到多少海报 思路 :离散化大区间  其中[1,4] [5,6]不能离散化成[1,2] [2,3]因为这样破坏了他们的非相邻关系 每次离散化区间 [x,y]时  把y+1点也加入 ...

  6. poj 2528 线段树区间修改+离散化

    Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...

  7. POJ 2528 Mayor’s posters (线段树段替换 && 离散化)

    题意 : 在墙上贴海报, n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000).求出最后还能看见多少张海报. 分析 ...

  8. POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】

    Mayor's posters Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  9. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

随机推荐

  1. HDU 3584 Cube

    题目大意:给定一个体积为N*N*N立方体,每个单位小立方体A[x][y][z]里有一个值,初始值全部为0,我们可以对立方体进行一下两种操作: 0表示查询A[x][y][z]的奇偶性 1表示对子立方体的 ...

  2. Android开发小记

    一,下载解压adt-bundle,直接可以用来开发了二,新建android项目时不勾选创建activity,来看看如何手动创建activity1,在空项目添加class文件,选择超类为activity ...

  3. 为什么每个程序员都应该用Mac OS X?

    1.Mac OS X 是基于 Unix 的.这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到.如果你是个 windows 开发人员,我想你会在 ...

  4. readv和writev函数

    readv 和 writev 函数用于在一次函数调用中读.写多个非连续缓冲区.有时也将这两个函数称为散布读和聚集写. #include <sys/uio.h> ssize_t readv( ...

  5. HYSBZ1588 营业额统计【Splay】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4366582.html   ---by 墨染之樱花 [题目链接]http://www.lydsy ...

  6. java线程池分析和应用

    比较 在前面的一些文章里,我们已经讨论了手工创建和管理线程.在实际应用中我们有的时候也会经常听到线程池这个概念.在这里,我们可以先针对手工创建管理线程和通过线程池来管理做一个比较.通常,我们如果手工创 ...

  7. 再谈协方差矩阵之主成分分析PCA

    上次那篇文章在理论层次介绍了下协方差矩阵,没准很多人觉得这东西用处不大,其实协方差矩阵在好多学科里都有很重要的作用,比如多维的正态分布,再比如今天我们今天的主角——主成分分析(Principal Co ...

  8. 部署django - Apache + mod_wsgi + windows

    部署django - Apache + mod_wsgi + windows 1.环境 django 1.6.2 python 3.3 32位 apache 2.4.7 32位 一个可以使用的djan ...

  9. SAN简介

    转自IBM资料库:https://community.emc.com/people/Jeffey/blog/2013/06/18/san%E5%8D%8F%E8%AE%AE SAN(Storage A ...

  10. Xamarin.Android开发实践(一)

    原文:Xamarin.Android开发实践(一) 一.准备工作 1.创建一个空的解决方案,并命名为Phoneword 2.右击解决方案 新建->新建项目 并命名为Phoneword_Droid ...