POJ 2528 QAQ段树+分离
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
Description
wall for placing the posters and introduce the following rules:
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates
started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
Input
were placed. The i-th line among the n lines contains two integer numbers l
i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l
i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l
i, l i+1 ,... , ri.
Output
The picture below illustrates the case of the sample input.

Sample Input
1
5
1 4
2 6
8 10
3 4
7 10
Sample Output
4
開始没有离散化处理导致内存超了,离散化就过了。。。。
/*************************************************************************
> File Name: B.cpp
> Author: acvcla
> QQ: 1319132622
> Mail: acvcla@gmail.com
> Created Time: 2014年10月04日 星期六 16时24分37秒
************************************************************************/
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<cstdlib>
#include<ctime>
#include<set>
#include<math.h>
using namespace std;
typedef long long LL;
const int maxn = 1e5 + 10;
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define pb push_back
short int col[maxn<<3];
bool v[maxn<<2];
int ll[maxn],rr[maxn],ttp[maxn<<3];
void push_down(int o){
if(col[o]!=-1){
col[o<<1]=col[o<<1|1]=col[o];
col[o]=-1;
}
}
void push_up(int o){
if(col[o<<1]==col[o<<1|1])col[o]=col[o<<1];
else col[o]=-1;
}
int ql,qr,x;
void built(int o,int l,int r)
{
col[o]=0;
if(l==r)return;
int M=(l+r)>>1;
built(o<<1,l,M);
built(o<<1|1,M+1,r);
}
void Modify(int o,int l,int r){
if(ql<=l&&qr>=r){
col[o]=x;
return;
}
int M=(l+r)>>1;
push_down(o);
if(ql<=M)Modify(o<<1,l,M);
if(qr>M)Modify(o<<1|1,M+1,r);
push_up(o);
}
int query(int o,int l,int r){
if(col[o]!=-1){
if(!col[o]||v[col[o]])return 0;
else{
v[col[o]]=true;
return 1;
}
}
if(l==r)return 0;
int M=(l+r)>>1;
push_down(o);
return query(o<<1,l,M)+query(o<<1|1,M+1,r);
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(0);
int n,T;cin>>T;
while(T--){
x=0;
cin>>n;
memset(v,0,sizeof v);
int cnt=0;
for(int i=1;i<=n;i++){
cin>>ll[i]>>rr[i];
ttp[++cnt]=ll[i];
ttp[++cnt]=rr[i];
}
sort(ttp+1,ttp+1+cnt);
cnt=unique(ttp+1,ttp+1+cnt)-ttp;
int t=cnt;
for(int i=1;i<t;i++)
{
if(ttp[i]+1!=ttp[i+1])ttp[++cnt]=ttp[i]+1;
}
sort(ttp+1,ttp+1+cnt);
built(1,1,cnt);
for(int i=1;i<=n;i++){
x=i;
ql=lower_bound(ttp+1,ttp+1+cnt,ll[i])-ttp;
qr=lower_bound(ttp+1,ttp+1+cnt,rr[i])-ttp;
Modify(1,1,cnt);
}
cout<<query(1,1,cnt)<<endl;
}
return 0;
}
版权声明:本文博客原创文章。博客,未经同意,不得转载。
POJ 2528 QAQ段树+分离的更多相关文章
- poj 2528 (线段树+离散化)
poj 2528 For each input data set print the number of visible posters after all the posters are place ...
- hdu4288 Coder(段树+分离)
主题链接: huangjing 题意: 题目中给了三个操作 1:add x 就是把x插进去 2:delete x 就是把x删除 3:sum 就是求下标%5=3的元素的和. 另一个条件是插入和删除最后 ...
- poj 2528 (线段树+特殊离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51098 Accepted: 14788 ...
- POJ 2528(线段树+离散化+特殊离散化)网上博客很少有人真正写对!!! 是POJ数据太水...
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- D - Mayor's posters POJ - 2528 离散化+线段树 区间修改单点查询
题意 贴海报 最后可以看到多少海报 思路 :离散化大区间 其中[1,4] [5,6]不能离散化成[1,2] [2,3]因为这样破坏了他们的非相邻关系 每次离散化区间 [x,y]时 把y+1点也加入 ...
- poj 2528 线段树区间修改+离散化
Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...
- POJ 2528 Mayor’s posters (线段树段替换 && 离散化)
题意 : 在墙上贴海报, n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000).求出最后还能看见多少张海报. 分析 ...
- POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】
Mayor's posters Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- poj 2528 Mayor's posters(线段树+离散化)
/* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...
随机推荐
- JavaEE Tutorials (8) - Java持久化API介绍
8.1实体96 8.1.1实体类的需求97 8.1.2实体类中的持久化字段和属性97 8.1.3实体的主键101 8.1.4实体关系中的多重性103 8.1.5实体关系中的方向103 8.1.6实体中 ...
- poj 1386 Play on Words(有向图欧拉路+并查集)
题目链接:http://poj.org/problem?id=1386 思路分析:该问题要求判断单词是否能连接成一条直线,转换为图论问题:将单词的首字母和尾字母看做一个点,每个单词描述了一条从首字母指 ...
- QT renered html for js
voidMainWindow::on_pushButton_clicked() { QStringurl="http://www.baidu.com"; url="htt ...
- uva 10651 - Pebble Solitaire(记忆化搜索)
题目链接:10651 - Pebble Solitaire 题目大意:给出一个12格的棋盘,‘o'代表摆放棋子,’-‘代表没有棋子, 当满足’-oo'时, 最右边的棋子可以跳到最左边的位子,而中间的棋 ...
- Matlab pivotgolf
function scoreout = pivotgolf(course,pivotstrat) % PIVOTGOLF Pivot Pickin' Golf. % Your goal is to u ...
- BI商业智能项目中的若干风险要素
BI商业智能项目应在 “业务驱动,总体规划,统一设计,分期实施” 的总体设计原则下分期实施,采取Agile BI方法论迭代开展,先确保核心功能满足客户需求,在总体规划下不断完善整个系统,以提高可交付性 ...
- win7 64位下如何安装配置mysql-5.7.4-m14-winx64
win7 64位下如何安装配置mysql-5.7.4-m14-winx641. mysql-5.7.4-m14-winx64.zip下载 官方网站下载地址:http://dev.mysql.com/g ...
- 【Linux命令】Ubuntu14.04+QT5.2配置mysql
安装qt: 官网下载qt5.2.1:qt-opensource-linux-x64-5.2.1.run 直接命令行运行:./qt-opensource-linux-x64-5.2.1.run 选择安装 ...
- 梳排序(Comb sort)
Comb Sort,梳排序或者梳子排序,就像梳子那样有间隔地比较两个数,很形象,O(n*logn)时间复杂度,O(1)空间复杂度,属于不稳定的排序算法.算法的思想是使逆序的元素尽可能快地移动到最终的位 ...
- rollback的作用
#pragma mark - 以队列的形式添加 // 以队列的形式添加数据FMDB比较常用的添加方式 // FMDB不支持多个线程同时操作,所以一般以串行的方式实现相关操作 - (IBAction)i ...