题目大意:给你N和K,问有多少个数对满足gcd(N-A,N)*gcd(N-B,N)=N^K。
题解:由于 gcd(a, N) <= N,于是 K>2 都是无解,K=2 只有一个解 A=B=N,只要考虑K=1的情况就好了其实上式和这个是等价的gcd(A,N)*gcd(B,N)=N^K,我们枚举gcd(A,N)=g,那么gcd(B,N)=N/g。问题转化为统计满足 gcd(A, N)=g的A的个数。这个答案就是 ɸ(N/g),只要枚举 N 的 约数就可以了。答案是 Σɸ(N/g)*ɸ(g)(g|N)。
#include <cstdio>
typedef long long LL;
const int MOD=1000000007;
LL Eular(LL n){
LL ret=1;
for(LL i=2;i*i<=n;i++){
if(n%i==0){
n/=i,ret*=i-1;
while(n%i==0)n/=i,ret*=i;
}
}if(n>1)ret*=(n-1);
return ret;
}
int main(){
int n,k;
while(~scanf("%d%d",&n,&k)){
if(n==1||k==2){puts("1");continue;}
if(k>2){puts("0");continue;}
LL ans=0;
for(LL i=1;i*i<=n;i++)if(n%i==0){
LL t=Eular(i)*Eular(n/i)%MOD;
(ans+=t)%=MOD;
if(i*i!=n)(ans+=t)%=MOD;
}printf("%d\n",(int)ans);
}return 0;
}

HDU 4983 Goffi and GCD的更多相关文章

  1. hdu 4983 Goffi and GCD(数论)

    题目链接:hdu 4983 Goffi and GCD 题目大意:求有多少对元组满足题目中的公式. 解题思路: n = 1或者k=2时:答案为1 k > 2时:答案为0(n≠1) k = 1时: ...

  2. HDU 4983 Goffi and GCD(数论)

    HDU 4983 Goffi and GCD 思路:数论题.假设k为2和n为1.那么仅仅可能1种.其它的k > 2就是0种,那么事实上仅仅要考虑k = 1的情况了.k = 1的时候,枚举n的因子 ...

  3. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  4. 【HDOJ】4983 Goffi and GCD

    题意说的非常清楚,即求满足gcd(n-a, n)*gcd(n-b, n) = n^k的(a, b)的不同对数.显然gcd(n-a, n)<=n, gcd(n-b, n)<=n.因此当n不为 ...

  5. HDU 4981 Goffi and Median(水)

    HDU 4981 Goffi and Median 思路:排序就能够得到中间数.然后总和和中间数*n比較一下就可以 代码: #include <cstdio> #include <c ...

  6. HDU 4982 Goffi and Squary Partition(推理)

    HDU 4982 Goffi and Squary Partition 思路:直接从全然平方数往下找,然后推断是否能构造出该全然平方数,假设能够就是yes,假设都不行就是no.注意构造时候的推断,因为 ...

  7. hdu 5869 区间不同GCD个数(树状数组)

    Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  8. hdu 5656 CA Loves GCD(n个任选k个的最大公约数和)

    CA Loves GCD  Accepts: 64  Submissions: 535  Time Limit: 6000/3000 MS (Java/Others)  Memory Limit: 2 ...

  9. hdu 4983 欧拉函数

    http://acm.hdu.edu.cn/showproblem.php?pid=4983 求有多少对元组满足题目中的公式. 对于K=1的情况,等价于gcd(A, N) * gcd(B, N) = ...

随机推荐

  1. leetcode Linked List Cycle python

    # Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = ...

  2. Linux学习之awk命令

    一. AWK 说明    awk是一种编程语言,用于在linux/unix下对文本和数据进行处理.数据可以来自标准输入.一个或多个文件,或其它命令的输出.它支持用户自定义函数和动态正则表达式等先进功能 ...

  3. Javascript 缓冲运动——逐行分析代码,让你轻松了解缓冲运动的原理

    看过上一篇关于Javascript 匀速运动文章的朋友相信对于运动已经有了初步的了解 接下来 讲一下关于缓冲运动的原理 ,我会逐行分析代码,代码简单易懂,能马上理解其中的原理,适用于初学者. #div ...

  4. 走进C标准库(1)——assert.h,ctype.h

    默默觉得原来的阅读笔记的名字太土了,改了个名字,叫做走进C标准库. 自己就是菜鸟一只,第一次具体看C标准库,文章参杂了对<the standard C library>的阅读和对源码的一些 ...

  5. 强大的DELPHI RTTI–兼谈需要了解多种开发语言

    一月 27th, 2005 by 猛禽 风焱在<“18般武艺”?>中说到他碰上的被多种语言纠缠的问题.我在回复里说: 很多语言只要能看懂几分就行了,没必要每一种都精通 但是如果只会很少的一 ...

  6. c# 获取移动硬盘信息、监听移动设备的弹出与插入事件

    原文 http://www.cnblogs.com/coolkiss/p/3328825.html 备忘一下改功能,主要通过WMI来实现,对于监听外接设备的弹出和插入事件一开始使用IntPtr Wnd ...

  7. ViewPager实现页卡的最新方法--简洁的TabLayout(谷歌支持包)

    效果图: 添加依赖包: compile ‘com.android.support:design:‘ 布局文件: <?xml version="1.0" encoding=&q ...

  8. Django里面的自定义tag和filter

    Django的文档里面有这么一句 The app that contains the custom tags must be in INSTALLED_APPS  in order for the { ...

  9. [Leetcode][Python]29: Divide Two Integers

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 29: Divide Two Integershttps://oj.leetc ...

  10. poj2140---herd sums

    #include<stdio.h> #include<stdlib.h> int main() { ,i,j; scanf("%d",&n); ;i ...