数据聚合与分组运算——GroupBy技术(1),有需要的朋友可以参考下。

  pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数。应用组内转换或其他运算,如规格化、线性回归、排名或选取子集等。计算透视表或交叉表。执行分位数分析以及其他分组分析。

1、首先来看看下面这个非常简单的表格型数据集(以DataFrame的形式):

>>> import pandas as pd
>>> df = pd.DataFrame({'key1':['a', 'a', 'b', 'b', 'a'],
... 'key2':['one', 'two', 'one', 'two', 'one'],
... 'data1':np.random.randn(5),
... 'data2':np.random.randn(5)})
>>> df
data1 data2 key1 key2
0 -0.410673 0.519378 a one
1 -2.120793 0.199074 a two
2 0.642216 -0.143671 b one
3 0.975133 -0.592994 b two
4 -1.017495 -0.530459 a one

假设你想要按key1进行分组,并计算data1列的平均值,我们可以访问data1,并根据key1调用groupby:

>>> grouped = df['data1'].groupby(df['key1'])
>>> grouped
<pandas.core.groupby.SeriesGroupBy object at 0x04120D70>

变量grouped是一个GroupBy对象,它实际上还没有进行任何计算,只是含有一些有关分组键df['key1']的中间数据而已,然后我们可以调用GroupBy的mean方法来计算分组平均值:

>>> grouped.mean()
key1
a -1.182987
b 0.808674
dtype: float64

说明:数据(Series)根据分组键进行了聚合,产生了一个新的Series,其索引为key1列中的唯一值。之所以结果中索引的名称为key1,是因为原始DataFrame的列df['key1']就叫这个名字。

2、如果我们一次传入多个数组,就会得到不同的结果:

>>> means = df['data1'].groupby([df['key1'], df['key2']]).mean()
>>> means
key1 key2
a one -0.714084
two -2.120793
b one 0.642216
two 0.975133
dtype: float64

通过两个键对数据进行了分组,得到的Series具有一个层次化索引(由唯一的键对组成):

>>> means.unstack()
key2 one two
key1
a -0.714084 -2.120793
b 0.642216 0.975133

在上面这些示例中,分组键均为Series。实际上,分组键可以是任何长度适当的数组:

>>> states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])
>>> years = np.array([2005, 2005, 2006, 2005, 2006])
>>> df['data1'].groupby([states, years]).mean()
California 2005 -2.120793
2006 0.642216
Ohio 2005 0.282230
2006 -1.017495
dtype: float64

3、此外,你还可以将列名(可以是字符串、数字或其他Python对象)用作分组将:

>>> df.groupby('key1').mean()
data1 data2
key1
a -1.182987 0.062665
b 0.808674 -0.368333
>>> df.groupby(['key1', 'key2']).mean()
data1 data2
key1 key2
a one -0.714084 -0.005540
two -2.120793 0.199074
b one 0.642216 -0.143671
two 0.975133 -0.592994

说明:在执行df.groupby('key1').mean()时,结果中没有key2列。这是因为df['key2']不是数值数据,所以被从结果中排除了。默认情况下,所有数值列都会被聚合,虽然有时可能会被过滤为一个子集。

无论你准备拿groupby做什么,都有可能会用到GroupBy的size方法,它可以返回一个含有分组大小的Series:

>>> df.groupby(['key1', 'key2']).size()
key1 key2
a one 2
two 1
b one 1
two 1
dtype: int64

注意:分组键中的任何缺失值都会被排除在结果之外。

4、对分组进行迭代

GroupBy对象支持迭代,可以产生一组二元元组(由分组名和数据块组成)。看看下面这个简单的数据集:

>>> for name, group in df.groupby('key1'):
... print(name)
... print(group)
...
a
data1 data2 key1 key2
0 -0.410673 0.519378 a one
1 -2.120793 0.199074 a two
4 -1.017495 -0.530459 a one
b
data1 data2 key1 key2
2 0.642216 -0.143671 b one
3 0.975133 -0.592994 b two

对于多重键的情况,元组的第一个元素将会是由键值组成的元组:

>>> for (k1, k2), group in df.groupby(['key1', 'key2']):
... print k1, k2
... print group
...
a one
data1 data2 key1 key2
0 -0.410673 0.519378 a one
4 -1.017495 -0.530459 a one
a two
data1 data2 key1 key2
1 -2.120793 0.199074 a two
b one
data1 data2 key1 key2
2 0.642216 -0.143671 b one
b two
data1 data2 key1 key2
3 0.975133 -0.592994 b two

当然,你可以对这些数据片段做任何操作。有一个你可能会觉得有用的运算:将这些数据片段做成一个字典:

>>> pieces = dict(list(df.groupby('key1')))
>>> pieces['b']
data1 data2 key1 key2
2 0.642216 -0.143671 b one
3 0.975133 -0.592994 b two
>>> df.groupby('key1')
<pandas.core.groupby.DataFrameGroupBy object at 0x0413AE30>
>>> list(df.groupby('key1'))
[('a', data1 data2 key1 key2
0 -0.410673 0.519378 a one
1 -2.120793 0.199074 a two
4 -1.017495 -0.530459 a one), ('b', data1 data2 key1 key2
2 0.642216 -0.143671 b one
3 0.975133 -0.592994 b two)]

groupby默认是在axis=0上进行分组的,通过设置也可以在其他任何轴上进行分组。那上面例子中的df来说,我们可以根据dtype对列进行分组:

>>> df.dtypes
data1 float64
data2 float64
key1 object
key2 object
dtype: object
>>> grouped = df.groupby(df.dtypes, axis=1)
>>> dict(list(grouped))
{dtype('O'): key1 key2
0 a one
1 a two
2 b one
3 b two
4 a one, dtype('float64'): data1 data2
0 -0.410673 0.519378
1 -2.120793 0.199074
2 0.642216 -0.143671
3 0.975133 -0.592994
4 -1.017495 -0.530459}
>>> grouped
<pandas.core.groupby.DataFrameGroupBy object at 0x041288F0>
>>> list(grouped)
[(dtype('float64'), data1 data2
0 -0.410673 0.519378
1 -2.120793 0.199074
2 0.642216 -0.143671
3 0.975133 -0.592994
4 -1.017495 -0.530459), (dtype('O'), key1 key2
0 a one
1 a two
2 b one
3 b two
4 a one)]

5、选取一个或一组列

对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的,即:

>>> df.groupby('key1')['data1']
<pandas.core.groupby.SeriesGroupBy object at 0x06615FD0>
>>> df.groupby('key1')['data2']
<pandas.core.groupby.SeriesGroupBy object at 0x06615CB0>
>>> df.groupby('key1')[['data2']]
<pandas.core.groupby.DataFrameGroupBy object at 0x06615F10>

和以下代码是等效的:

>>> df['data1'].groupby([df['key1']])
<pandas.core.groupby.SeriesGroupBy object at 0x06615FD0>
>>> df[['data2']].groupby([df['key1']])
<pandas.core.groupby.DataFrameGroupBy object at 0x06615F10>
>>> df['data2'].groupby([df['key1']])
<pandas.core.groupby.SeriesGroupBy object at 0x06615E30>

尤其对于大数据集,很可能只需要对部分列进行聚合。例如,在前面那个数据集中,如果只需计算data2列的平均值并以DataFrame形式得到结果,代码如下:

>>> df.groupby(['key1', 'key2'])[['data2']].mean()
data2
key1 key2
a one -0.005540
two 0.199074
b one -0.143671
two -0.592994
>>> df.groupby(['key1', 'key2'])['data2'].mean()
key1 key2
a one -0.005540
two 0.199074
b one -0.143671
two -0.592994
Name: data2, dtype: float64

这种索引操作所返回的对象是一个已分组的DataFrame(如果传入的是列表或数组)或已分组的Series(如果传入的是标量形式的单个列明):

>>> s_grouped = df.groupby(['key1', 'key2'])['data2']
>>> s_grouped
<pandas.core.groupby.SeriesGroupBy object at 0x06615B10>
>>> s_grouped.mean()
key1 key2
a one -0.005540
two 0.199074
b one -0.143671
two -0.592994
Name: data2, dtype: float64

6、通过字典或Series进行分组

除数组以外,分组信息还可以其他形式存在,来看一个DataFrame示例:

>>> people = pd.DataFrame(np.random.randn(5, 5),
... columns=['a', 'b', 'c', 'd', 'e'],
... index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis']
... )
>>> people
a b c d e
Joe 0.306336 -0.139431 0.210028 -1.489001 -0.172998
Steve 0.998335 0.494229 0.337624 -1.222726 -0.402655
Wes 1.415329 0.450839 -1.052199 0.731721 0.317225
Jim 0.550551 3.201369 0.669713 0.725751 0.577687
Travis -2.013278 -2.010304 0.117713 -0.545000 -1.228323
>>> people.ix[2:3, ['b', 'c']] = np.nan

假设已知列的分组关系,并希望根据分组计算列的总计:

>>> mapping = {'a':'red', 'b':'red', 'c':'blue',
... 'd':'blue', 'e':'red', 'f':'orange'}
>>> mapping
{'a': 'red', 'c': 'blue', 'b': 'red', 'e': 'red', 'd': 'blue', 'f': 'orange'}
>>> type(mapping)
<type 'dict'>

现在,只需将这个字典传给groupby即可:

>>> by_column = people.groupby(mapping, axis=1)
>>> by_column
<pandas.core.groupby.DataFrameGroupBy object at 0x066150F0>
>>> by_column.sum()
blue red
Joe -1.278973 -0.006092
Steve -0.885102 1.089908
Wes 0.731721 1.732554
Jim 1.395465 4.329606
Travis -0.427287 -5.251905

Series也有同样的功能,它可以被看做一个固定大小的映射。对于上面那个例子,如果用Series作为分组键,则pandas会检查Series以确保其索引跟分组轴是对齐的:

>>> map_series = pd.Series(mapping)
>>> map_series
a red
b red
c blue
d blue
e red
f orange
dtype: object
>>> people.groupby(map_series, axis=1).count()
blue red
Joe 2 3
Steve 2 3
Wes 1 2
Jim 2 3
Travis 2 3

7、通过函数进行分组

相较于字典或Series,Python函数在定义分组映射关系时可以更有创意且更为抽象。任何被当做分组键的函数都会在各个索引值上被调用一次,其返回值就会被用作分组名称。

具体点说,以DataFrame为例,其索引值为人的名字。假设你希望根据人名的长度进行分组,虽然可以求取一个字符串长度数组,但其实仅仅传入len函数即可:

>> people.groupby(len).sum()
a b c d e
3 2.272216 3.061938 0.879741 -0.031529 0.721914
5 0.998335 0.494229 0.337624 -1.222726 -0.402655
6 -2.013278 -2.010304 0.117713 -0.545000 -1.228323

将函数跟数组、列表、字典、Series混合使用也不是问题,因为任何东西最终都会被转换为数组:

>>> key_list = ['one', 'one', 'one', 'two', 'two']
>>> people.groupby([len, key_list]).min()
a b c d e
3 one 0.306336 -0.139431 0.210028 -1.489001 -0.172998
two 0.550551 3.201369 0.669713 0.725751 0.577687
5 one 0.998335 0.494229 0.337624 -1.222726 -0.402655
6 two -2.013278 -2.010304 0.117713 -0.545000 -1.228323

8、根据索引级别分组

层次化索引数据集最方便的地方在于它能够根据索引级别进行聚合。要实现该目的,通过level关键字传入级别编号或名称即可:

>>> columns = pd.MultiIndex.from_arrays([['US', 'US', 'US', 'JP', 'JP'],
... [1, 3, 5, 1, 3]], names=['cty', 'tenor'])
>>> columns
MultiIndex
[US 1, 3, 5, JP 1, 3]
>>> hier_df = pd.DataFrame(np.random.randn(4, 5), columns=columns)
>>> hier_df
cty US JP
tenor 1 3 5 1 3
0 -0.166600 0.248159 -0.082408 -0.710841 -0.097131
1 -1.762270 0.687458 1.235950 -1.407513 1.304055
2 1.089944 0.258175 -0.749688 -0.851948 1.687768
3 -0.378311 -0.078268 0.247147 -0.018829 0.744540
>>> hier_df.groupby(level='cty', axis=1).count()
cty JP US
0 2 3
1 2 3
2 2 3
3 2 3

pandas聚合和分组运算——GroupBy技术(1)的更多相关文章

  1. pandas聚合和分组运算之groupby

    pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作.根据一个或多个键(可以是函数.数组或DataFrame列名)拆分pandas对象.计算分 ...

  2. Python数据聚合和分组运算(1)-GroupBy Mechanics

    前言 Python的pandas包提供的数据聚合与分组运算功能很强大,也很灵活.<Python for Data Analysis>这本书第9章详细的介绍了这方面的用法,但是有些细节不常用 ...

  3. 《利用python进行数据分析》读书笔记--第九章 数据聚合与分组运算(一)

    http://www.cnblogs.com/batteryhp/p/5046450.html 对数据进行分组并对各组应用一个函数,是数据分析的重要环节.数据准备好之后,通常的任务就是计算分组统计或生 ...

  4. Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识

    Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...

  5. 《python for data analysis》第九章,数据聚合与分组运算

    # -*- coding:utf-8 -*-# <python for data analysis>第九章# 数据聚合与分组运算import pandas as pdimport nump ...

  6. Python之数据聚合与分组运算

    Python之数据聚合与分组运算 1. 关系型数据库方便对数据进行连接.过滤.转换和聚合. 2. Hadley Wickham创建了用于表示分组运算术语"split-apply-combin ...

  7. Python 数据分析—第九章 数据聚合与分组运算

    打算从后往前来做笔记 第九章 数据聚合与分组运算 分组 #生成数据,五行四列 df = pd.DataFrame({'key1':['a','a','b','b','a'], 'key2':['one ...

  8. 【学习】数据聚合和分组运算【groupby】

    分组键可以有多种方式,且类型不必相同 列表或数组, 某长度与待分组的轴一样 表示DataFrame某个列名的值 字典或Series,给出待分组轴上的值与分组名之间的对应关系 函数用于处理轴索引或索引中 ...

  9. 利用Python进行数据分析-Pandas(第六部分-数据聚合与分组运算)

    对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节.在将数据集加载.融合.准备好之后,通常是计算分组统计或生成透视表.pandas提供了一个灵活高效的group ...

随机推荐

  1. 解决:对 PInvoke 函数的调用导致堆栈不对称问题 <转载>

    问题描述: 在使用托管代码调用非托管代码时,发生“对 PInvoke 函数“UseTwiHikVisionDllTest!UseTwiHikVisionDllTest.TwiHikVision::Ge ...

  2. 初探接口测试框架--python系列1

    点击标题下「蓝色微信名」可快速关注 坚持的是分享,搬运的是知识,图的是大家的进步,没有收费的培训,没有虚度的吹水,喜欢就关注.转发(免费帮助更多伙伴)等来交流,想了解的知识请留言,给你带来更多价值,是 ...

  3. Java基本概念(未完)

    仅简单总结~辅助快速回忆~ 一.JVM 1,Java类加载机制 Java程序由多个类文件组成,按需加载. Java的动态扩展是由运行期动态加载和动态链接实现的.——动态绑定,多态. 加载步骤: 1)装 ...

  4. opecv轮廓匹配,可以用于去噪

    一个跟轮廓相关的最常用到的功能是匹配两个轮廓.如果有两个轮廓,如何比较它们;或者如何比较一个轮廓和另一个抽象模板. 矩 比较两个轮廓最简洁的方式是比较他们的轮廓矩.这里先简短介绍一个矩的含义.简单的说 ...

  5. 是否连接VPN

    //需要导入ifadds头文件 //是否连接VPN - (BOOL)isVPNConnected{     struct ifaddrs *interfaces = NULL;     struct ...

  6. jQuery datepicker

    <script type="text/javascript" src="/assets/datepicker/jquery-ui-1.9.1.min.js" ...

  7. K均值算法实现

    运行环境:Ubuntu+Code::Blocks(G++) K-均值:在D(数据集)中随机地选择k个对象,每个对象代表一个簇的初始均值或中心.对剩下的每个对象,根据其与各个簇中心的欧式距离,将它分配到 ...

  8. 【Hibernate 5】继承映射配置及多态查询

    一.继承实现的三种策略 1.1,单表继承.每棵类继承树使用一个表(table per class hierarchy) -->本文主要介绍的继承策略 类继承树对应多个类,要把多个类的信息存放在一 ...

  9. [zt]Which are the 10 algorithms every computer science student must implement at least once in life?

    More important than algorithms(just problems #$!%), the techniques/concepts residing at the base of ...

  10. 利用SecondaryNameNode文件恢复Namenode-实践可行

    二. namenode故障恢复(importCheckpoint) *注意事项: (1) 为了便于将随便一台datanode临时用作namenode,datanode和namenode配置需要一模一样 ...