Description

在米国有一所大学,名叫万国歌剧与信息大学(UniversalOperaandInformaticasUniversity)。简称UOI大学。UO
I大学的建筑与道路分布很有趣,每对建筑之间有且仅有一条直接或者间接的路径相连,更加明确的说,就是成树
形分布。其实在设计时,对于大学的N个建筑,总共有M条道路可以修建,每条道路都有一个距离值Disti和一个美
学值Valuei。一个设计方案的距离值和美学值定义为该设计方案内包含的道路的距离值与美学值之和。投资方的要
求只有设计方案的距离值最小。大神出于对树的喜爱所以决定设计方案必须是一棵树。因为要参加UOI,所以当时
大神就急急忙忙地随机选择了一个合法的方案。但其实存在很多合法的方案,假设每种设计方案取的概率是均等的
,那么设计方案的美学值期望是多少?

Input

第一行两个整数,N和M,意义如上所述。
第二行到第M+1行,每行4个整数,Xi,Yi,Disti,Valuei,分别表示这条道路连接的
两个建筑的编号,距离值以及美学值。
输入保证至少有一种合法方案。
100%的数据保证N<=10000M<=200000
100%的数据保证距离值相同的道路数小于30,同时不保证没有重边。

Output

一行一个整数,即满足总道路长度最小的情况下,设计方案的美学值期望。要求保留5位小数

按边权升序加边同时缩点,忽略缩点产生的自环,对同一权值且 加入此权值的边后在同个联通块内 的一组边,用矩阵树定理计算出生成树个数以及删去每条边后的生成树个数,于是可得一条边在最小生成树中的概率,统计答案。似乎要用long double才能过,但计算行列式时无论用long double还是模意义下的整数计算都能过。

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long double ld;
#define double ld
int _(){
int x=,c=getchar(),f=;
while(c<)c=='-'&&(f=-),c=getchar();
while(c>)x=x*+c-,c=getchar();
return x*f;
}
int es[],enx[],e0[],ep=,ev[];
struct edge{
int a,b,c,d;
void init(){
a=_();b=_();c=_();d=_();
}
void adde(){
es[ep]=b;enx[ep]=e0[a];ev[ep]=d;e0[a]=ep++;
es[ep]=a;enx[ep]=e0[b];ev[ep]=d;e0[b]=ep++;
}
}e[];
bool operator<(edge a,edge b){
return a.c<b.c;
}
double ans=;
int n,m,f[],id[],idp=,idt[],tk=,ed[],ID[],IDP;
int v[][],v1,ee[][],eep,os[][],op=;
int get(int x){
int a=x,c;
while(x!=f[x])x=f[x];
while(x!=f[a])c=f[a],f[a]=x,a=c;
return x;
}
void gid(int x){
if(idt[x]!=tk)idt[x]=tk,id[x]=++idp;
}
void dfs(int w){
if(ed[w]!=tk)ed[w]=tk,ID[w]=++IDP;
for(int i=e0[w],u;i;i=enx[i]){
u=es[i];
if(ed[u]!=tk)dfs(u);
if(ID[w]<ID[u]){
++v[ID[w]][ID[w]];
++v[ID[u]][ID[u]];
--v[ID[w]][ID[u]];
--v[ID[u]][ID[w]];
ee[eep][]=ID[w];
ee[eep][]=ID[u];
ee[eep++][]=ev[i];
}
}
}
const double _0=1e-;
double solve(int n){
static double a[][];
double s=;
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
a[i][j]=v[i][j];
for(int i=;i<=n;++i){
if(fabs(a[i][i])<_0){
int t=i;
for(int j=i+;j<=n;++j)if(fabs(a[j][i])>fabs(a[t][i]))t=j;
if(fabs(a[t][i])<_0)return ;
for(int j=i;j<=n;++j)swap(a[i][j],a[t][j]);
}
for(int j=i+;j<=n;++j)if(a[j][i]){
double x=a[j][i]/a[i][i];
for(int k=i;k<=n;++k)a[j][k]-=x*a[i][k];
}
}
for(int i=;i<=n;++i)s*=a[i][i];
return s;
}
void chk(int x){
if(ed[x]==tk)return;
IDP=;++tk;eep=;
dfs(x);
double v0=solve(IDP-);
for(int i=;i<eep;++i){
int x=ee[i][],y=ee[i][];
--v[x][x],--v[y][y],++v[x][y],++v[y][x];
double v1=v0-solve(IDP-);
ans+=v1/v0*ee[i][];
++v[x][x],++v[y][y],--v[x][y],--v[y][x];
}
for(int i=;i<=IDP;++i){
for(int j=;j<=IDP;++j)v[i][j]=;
}
}
int main(){
n=_();m=_();
for(int i=;i<=n;++i)f[i]=i;
for(int i=;i<m;++i)e[i].init();
std::sort(e,e+m);
for(int i=,j=;i<m;){
for(++tk,idp=;j<m&&e[i].c==e[j].c;++j);
for(int k=i;k<j;++k){
int x=get(e[k].a),y=get(e[k].b);
if(x==y){
e[k].a=-;
continue;
}
os[op][]=e[k].a;os[op++][]=e[k].b;
gid(x);gid(y);
e[k].a=id[x];
e[k].b=id[y];
e[k].adde();
}
while(op)--op,f[get(os[op][])]=get(os[op][]);
for(;i<j;++i)if(~e[i].a){
chk(e[i].a);
chk(e[i].b);
}
for(int t=;t<=idp;++t)e0[t]=;
ep=;
}
printf("%.5Lf",ans);
return ;
}

bzoj4637: 期望的更多相关文章

  1. 【BZOJ4637】期望 Kruskal+矩阵树定理

    [BZOJ4637]期望 Description 在米国有一所大学,名叫万国歌剧与信息大学(UniversalOperaandInformaticasUniversity).简称UOI大学.UOI大学 ...

  2. bzoj4637:期望

    思路:最小生成树计数只不过加了一个期望,由于期望具有线性性质,就可以转化为每条边的期望之和,那么一条边的期望如何求呢,在最小生成树记数中,是把相同边权的一起处理,之后把属于连通块内的点缩点,也就是说, ...

  3. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  4. bzoj1415[NOI2005]聪聪和可可-期望的线性性

    这道题之前我写过一个巨逗比的写法(传送门:http://www.cnblogs.com/liu-runda/p/6220381.html) 当时的原因是这道题可以抽象出和"绿豆蛙的归宿&qu ...

  5. hdu 4481 Time travel(高斯求期望)(转)

    (转)http://blog.csdn.net/u013081425/article/details/39240021 http://acm.hdu.edu.cn/showproblem.php?pi ...

  6. 【BZOJ3036】绿豆蛙的归宿 概率与期望

    最水的概率期望,推荐算法合集之<浅析竞赛中一类数学期望问题的解决方法> #include <iostream> #include <cstdio> using na ...

  7. UVA&&POJ离散概率与数学期望入门练习[4]

    POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...

  8. 【BZOJ-1426】收集邮票 概率与期望DP

    1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 261  Solved: 209[Submit][Status][Discuss] ...

  9. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

随机推荐

  1. Sed简单入门实例

    1. Sed简介 sed 是一种在线编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后 ...

  2. dedecms调用子栏目内容,缩略图,以及栏目名字

    织梦后台栏目页默认是没有添加缩略图的选项的,所以首先我们要调整后台提交表单使界面出现上传图片的地方,如下图所示:   织梦后台默认是没有栏目缩略图选项的,所以首先你需要从网上下载对应需要修改的文件,从 ...

  3. C#堆栈讲解

    1:栈就是堆栈,因为堆和堆栈这样说太拗口了,搞得像绕口令,所以有些时候就把堆栈简称为栈.堆和栈,你看这又多舒服.但无论什么时候,堆栈都不等于堆和栈,必须说,堆和栈或者堆和堆栈. 2:值类型变量和引用类 ...

  4. C特殊浮点值NaN

    特殊浮点值NaN(Not-a-Number),例如asin()函数返回反正弦值,所以输入参数不能大于1,否则函数返回NaN值,printf()显示为nan,NaN或类似形式.

  5. JS初学之-选项卡(图片切换类)

    初学选项卡,主要问题卡在了索引值上面,花了较长的时间学习. 索引值其实很好理解,就是为每一个元素用JS的方法添加一个属性,即自定义属性. 在for循环里的函数里用i,会直接弹出这个数组的length, ...

  6. JS初学之-自定义属性(索引值)

    重点:1.添加索引值的作用:建立匹配.对应的关系. 比如:使每一个按钮对应数组里的每一张图,arrImg[this.index]. 2.不要在for循环的函数里面使用i. 3.添加索引值的方法aBtn ...

  7. linux文件系统---10

    进入 Linux 根目录(即“/”, Linux 文件系统的入口, 也是处于最高一级的目录),运行“ls –l”命令,可以看到 Linux 系统包含以下目录. 1./bin 包含基本命令,如 ls.c ...

  8. URAL 1218 Episode N-th: The Jedi Tournament(强连通分量)(缩点)

    Episode N-th: The Jedi Tournament Time limit: 1.0 secondMemory limit: 64 MB Decided several Jedi Kni ...

  9. timus 1136 Parliament(二叉树)

    Parliament Time limit: 1.0 secondMemory limit: 64 MB A new parliament is elected in the state of MMM ...

  10. Linux系统编程@多线程与多进程GDB调试

    博客内容参考自 http://www.cnblogs.com/xuxm2007/archive/2011/04/01/2002162.html http://blog.csdn.net/pbymw8i ...