Description

题目描述

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University, noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

4937775= 3*5*5*65837

The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition.

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036.However, Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

阿尔伯特·威兰斯基是一位理海大学的数学家,在1982年浏览他自己的电话薄时,注意到他的表兄弟(Harold Smith)H. Smith的电话号码有有如下特点:各位上的数字相加等于分解质因数后各位上的数字相加。懂否?史密斯的电话号码是493-7775。这个数字可被分解质因数致如下形式:

4937775= 3*5*5*65837

这个电话号码各位数字的和是4+9+3+7+7+7+5= 42,并且与分解质因数后各位数字的和相等3+5+5+6+5+8+3+7=42。威兰斯基感觉很神奇就以他的表兄弟命名:史密斯数。

不过这个性质对每个质数都成立,因此威兰斯基后来把质数(分解不能)从史密斯数的定义中剔除了。

威兰斯基在the Two Year College Mathematics Journal发表了关于史密斯数的论文并且列出了一整套史密斯数:举个栗子,9985是史密斯数,6036也是。但是威兰斯基没能找到比他表兄弟电话号码4937775更大的史密斯数,你可以当条红领巾!

Input

输入

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.

输入文件由一列正整数组成,每行一个整数。每个整数最多8位。数字0表示输入结束。

Output

输出

For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n, and print it on a line by itself. You can assume that such a number exists.

对于每个n>0的输入,你要算出大于n的最小史密斯数,输出一行。你可以认为结果是存在的。

Sample Input - 输入样例

Sample Output - 输出样例

4937774

0

4937775

【题解】

  首先,这道题是水题,不然就会和某个人一样觉得要用Pollard's rho算法……

  注意几点就可以了:

  ①可以暴力。②素数不是史密斯数。③从n+1开始找。

  ④题目描述和输入输出分开看,并不是要你找4937775后的史密斯数。

【代码 C++】

 #include<cstdio>
#include<cstring>
#include<cmath>
int prime[];
void rdy(){
bool temp[];
memset(temp, , sizeof(temp));
prime[] = ;
int i = , j, pi = ;
for (i = ; i < ; i += ){
if (temp[i]) continue;
else{
for (j = i << ; j < ; j += i) temp[j] = ;
prime[++pi] = i;
}
}
prime[] = ;
}
int digitSum(int now){
int sum = ;
while (now) sum += now % , now /= ;
return sum;
}
int find(int now){
int i = , ed = sqrtf(now) + 0.5;
if (ed > ) ed = ;
for (; prime[i] <= ed; ++i){
if (now%prime[i] == ) return prime[i];
}
return ;
}
int change(int now){
int sum = , temp, stp = ;
while (now > ){
temp = find(now);
if (temp) sum += digitSum(temp), now /= temp, ++stp;
else sum += digitSum(now), now = ;
}
if (stp) return sum;
return ;
}
int main(){
rdy();
int n;
while (scanf("%d", &n)){
if (n++){
while (digitSum(n) != change(n)) ++n;
printf("%d\n", n);
}
else break;
}
return ;
}

POJ 1142

POJ 1142 Smith Numbers(史密斯数)的更多相关文章

  1. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  2. POJ 1142 Smith Numbers(分治法+质因数分解)

    http://poj.org/problem?id=1142 题意: 给出一个数n,求大于n的最小数,它满足各位数相加等于该数分解质因数的各位相加. 思路:直接暴力. #include <ios ...

  3. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  4. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  5. Poj 2247 Humble Numbers(求只能被2,3,5, 7 整除的数)

    一.题目大意 本题要求写出前5482个仅能被2,3,5, 7 整除的数. 二.题解 这道题从本质上和Poj 1338 Ugly Numbers(数学推导)是一样的原理,只需要在原来的基础上加上7的运算 ...

  6. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

  7. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  8. UVA 10042 Smith Numbers(数论)

    Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...

  9. 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP

    [BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...

随机推荐

  1. source insight资源

    http://www.cnblogs.com/Red_angelX/p/3713935.html https://github.com/redxu/sihook

  2. DirectoryInfo类

    DirectoryInfo类和Directory类之间的关系与FileInfo类和File类之间的关系十分类似.下面介绍一下DirectoryInfo类的常用属性. DirectoryInfo类的常用 ...

  3. 5.24 Declaring Attributes of Functions【转】

    转自:https://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Function-Attributes.html 5.24 Declaring Attributes o ...

  4. 将linux下的rm命令改造成移动文件至回收站【转】

    转自:http://blog.csdn.net/a3470194/article/details/16863803 [-] 将linux下的rm命令改造成移动文件至回收站 将AIX下的rm命令改造成移 ...

  5. java数组初始化

    java数组初始化 //静态初始化数组:方法一 String cats[] = new String[] { "Tom","Sam","Mimi&qu ...

  6. JavaEE基础(十二)

    1.常见对象(Scanner的概述和方法介绍) A:Scanner的概述 B:Scanner的构造方法原理 Scanner(InputStream source) System类下有一个静态的字段: ...

  7. PostgreSQL中使用外部表

    1. 安装file_fdw 需要先安装file_fdw,一般是进到PostgreSQL的源码包中的contrib/file_fdw目录下,执行: make make install 然后进入数据库中, ...

  8. C/C++的一些备忘

    今天使用source insight阅读videoserver源码,有一些符号ctrl+左键点击显示找不到,先是rebuild工程和同步,没有效果,然后Options->Preferences- ...

  9. 主线程中创建不同的handler实例,接收消息会不会冲突

    http://www.cnblogs.com/transmuse/archive/2011/05/16/2048073.html这篇博文讲的比较透彻,可参考. 当然结论是不会冲突.因为每个messag ...

  10. ubunut 12.04 (64bit) android编译环境搭建

    sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl libgl1-mesa-dev zlib1g ...