# coding:utf8
import numpy as np
import cPickle
import os
import tensorflow as tf class SoftMax:
def __init__(self,MAXT=30,step=0.0025):
self.MAXT = MAXT
self.step = step def load_theta(self,datapath="data/softmax.pkl"):
self.theta = cPickle.load(open(datapath,'rb')) def process_train(self,data,label,typenum=10,batch_size=500):
batches = data.shape[0] / batch_size
valuenum=data.shape[1]
if len(label.shape)==1:
label=self.reshape_data(label,typenum)
x = tf.placeholder("float", [None,valuenum])
theta = tf.Variable(tf.zeros([valuenum,typenum]))
y = tf.nn.softmax(tf.matmul(x,theta))
y_ = tf.placeholder("float", [None, typenum])
cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #交叉熵
train_step = tf.train.GradientDescentOptimizer(self.step).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for epoch in range(self.MAXT):
cost_=[]
for index in xrange(batches):
c_,_=sess.run([cross_entropy,train_step], feed_dict={ x: data[index * batch_size: (index + 1) * batch_size],
y_: label[index * batch_size: (index + 1) * batch_size]})
cost_.append(c_)
if epoch % 5 == 0:
print(( 'epoch %i, minibatch %i/%i,averange cost is %f') %
(epoch,index + 1,batches,np.mean(cost_)))
self.theta=sess.run(theta)
if not os.path.exists('data/softmax.pkl'):
f= open("data/softmax.pkl",'wb')
cPickle.dump(self.theta,f)
f.close()
return self.theta def process_test(self,data,label,typenum=10):
valuenum=data.shape[1]
if len(label.shape)==1:
label=self.reshape_data(label,typenum)
x = tf.placeholder("float", [None,valuenum])
theta = self.theta
y = tf.nn.softmax(tf.matmul(x,theta))
y_ = tf.placeholder("float", [None, typenum])
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print "Accuracy: ",sess.run(accuracy, feed_dict={x: data,y_: label}) def h(self,x):
m = np.exp(np.dot(x,self.theta))
sump = np.sum(m,axis=1)
return m/sump def predict(self,x):
return np.argmax(self.h(x),axis=1) def reshape_data(self,label,typenum):
label_=[]
for yl_ in label:
tl_=np.zeros(typenum)
tl_[yl_]=1.0
label_.append(tl_)
return np.mat(label_) if __name__ == '__main__':
f = open('mnist.pkl', 'rb')
training_data, validation_data, test_data = cPickle.load(f)
training_inputs = [np.reshape(x, 784) for x in training_data[0]]
data = np.array(training_inputs)
training_inputs = [np.reshape(x, 784) for x in validation_data[0]]
vdata = np.array(training_inputs)
f.close() softmax = SoftMax()
softmax.process_train(data,training_data[1])
softmax.process_test(vdata,validation_data[1]) #Accuracy: 0.9269
softmax.process_test(data,training_data[1]) #Accuracy: 0.92718

Softmax回归(使用tensorflow)的更多相关文章

  1. 手写数字识别 ----Softmax回归模型官方案例注释(基于Tensorflow,Python)

    # 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tut ...

  2. TensorFlow实现Softmax回归(模型存储与加载)

    # -*- coding: utf-8 -*- """ Created on Thu Oct 18 18:02:26 2018 @author: zhen "& ...

  3. 利用TensorFlow识别手写的数字---基于Softmax回归

    1 MNIST数据集 MNIST数据集主要由一些手写数字的图片和相应的标签组成,图片一共有10类,分别对应从0-9,共10个阿拉伯数字.原始的MNIST数据库一共包含下面4个文件,见下表. 训练图像一 ...

  4. 统计学习方法:罗杰斯特回归及Tensorflow入门

    作者:桂. 时间:2017-04-21  21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...

  5. 使用Softmax回归将神经网络输出转成概率分布

    神经网络解决多分类问题最常用的方法是设置n个输出节点,其中n为类别的个数.对于每一个样例,神经网络可以得到一个n维数组作为输出结果.数组中的每一个维度(也就是每一个输出节点)对应一个类别,通过前向传播 ...

  6. Haskell手撸Softmax回归实现MNIST手写识别

    Haskell手撸Softmax回归实现MNIST手写识别 前言 初学Haskell,看的书是Learn You a Haskell for Great Good, 才刚看到Making Our Ow ...

  7. Softmax回归

    Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...

  8. Softmax回归(Softmax Regression)

    转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...

  9. DeepLearning之路(二)SoftMax回归

    Softmax回归   1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试 ...

  10. Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...

随机推荐

  1. UVALive 4682 XOR Sum (trie)

    题意:求一段连续的数字使得它们的异或和最大. 思路:首先利用前缀和求sum[i],这样求某段连续数字异或和最大就是求某两个j和i满足sum[i]^sum[j-1]最大,问题就变成了找两个数的异或最大. ...

  2. RAID-4与模2和

    在网络传输和磁盘数据管理中经常涉及到的所谓奇偶校验:每N个bit之后加上一个bit保证这N + 1bit的模2和为0(也叫异或,一个意思) 而如果这其中出现了单bit错, 直接导致校验出差,出现偶数b ...

  3. HDOJ-三部曲一(搜索、数学)- A Knight's Journey

    A Knight's Journey Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) ...

  4. 解决远程桌面链接时出现"The RPC server is unavailable."或"RPC服务器不可用"的问题

    解决远程桌面链接时出现"The RPC server is unavailable."或"RPC服务器不可用"的问题 解决远程桌面链接时出现"The ...

  5. magento的robots文件编写和判断是否是一个导航分类页面

    magento是网店系统,我们突出的是我们的产品,所以,有很多路径我们不想让搜索引擎索引到,所以我们需要用robots文件进行限制 下面是麦神magento的robots.txt里面的内容,因为很多u ...

  6. Ubuntu下安装lamp

    在Ubuntu里安装PHP环境时可以用恨简单的方法,直接用tasksel命令安装. 首先要安装这个命令: sudo apt-get install tasksel 然后,sudo tasksel in ...

  7. 【转】ROC和AUC介绍以及如何计算AUC

    转自:https://www.douban.com/note/284051363/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器( ...

  8. <area> 标签

    定义和用法 <area> 标签定义图像映射中的区域(注:图像映射指得是带有可点击区域的图像). area 元素总是嵌套在 <map> 标签中. 注释:<img> 标 ...

  9. PHP 中安装memcache扩展文件下载对应地址。

    PHP 5.5.1版本下载了很多,安装都不成功.终于找到一个适合版本. http://windows.php.net/downloads/pecl/releases/memcache/3.0.8/   ...

  10. python os.path 模块

    os.path模块用法: 1, os.path.basename() >>> os.path.basename('/share/Public/cmiao')'cmiao' basen ...