BZOJ 1001: [BeiJing2006]狼抓兔子 最小割
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001
现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:
左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦.
Input
第一行为N,M.表示网格的大小,N,M均小于等于1000.接下来分三部分第一部分共N行,每行M-1个数,表示横向道路的权值. 第二部分共N-1行,每行M个数,表示纵向道路的权值. 第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 输入文件保证不超过10M
Output
输出一个整数,表示参与伏击的狼的最小数量.
算法分析:咋一看,艾玛,最小割的水题,dinic()果断敲上A啊,想想时间复杂度不对啊,n和m都是1000的,O(n^2m)要跪的。上网看了别人的博客,学习到了s-t平面图的最小割的解法,把原图中的面看作点,起点和终点都等同于最外面的那一个面,原图中一条边权值为w,新图中就等同于此边在平面图中分割开的两个面(即新图中两个点)连一条边,权值为w。建模完成后,新图中的起点和终点的一条路径就穿插过原图的一些边,即一条路径等于原图中的一个割,所以最小割就等于新图的最短路径长度。确实很厉害。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#define inf 0x7fffffff
using namespace std;
const int maxn=+;
const int M = maxn*+; int n,m,nn,mm;
int from,to;
struct Edge
{
int v,flow;
int next;
}edge[M];
int head[maxn],edgenum; void add(int u,int v,int flow)
{
edge[edgenum].v=v ;edge[edgenum].flow=flow ;
edge[edgenum].next=head[u] ;head[u]=edgenum++ ; edge[edgenum].v=u ;edge[edgenum].flow=flow ;
edge[edgenum].next=head[v] ;head[v]=edgenum++ ;
} struct node
{
int v,w;
friend bool operator < (node a,node b)
{
return a.w > b.w;
}
}cur,tail;
int d[maxn],vis[maxn];
void Dijkstra(int from,int to)
{
for (int i= ;i<maxn ;i++) d[i]=inf;
memset(vis,,sizeof(vis));
d[from]=;
priority_queue<node> Q;
cur.v=from ;cur.w= ;
Q.push(cur);
while (!Q.empty())
{
cur=Q.top() ;Q.pop() ;
int x=cur.v;
if (vis[x]) continue;
vis[x]=;
for (int i=head[x] ;i!=- ;i=edge[i].next)
{
if (d[edge[i].v ]>d[x]+edge[i].flow)
{
d[edge[i].v ]=d[x]+edge[i].flow;
tail.v=edge[i].v;
tail.w=d[edge[i].v ];
Q.push(tail);
}
}
}
printf("%d\n",d[to]);
} int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
memset(head,-,sizeof(head));
edgenum=;
from=;
to=*(n-)*(m-)+;
int x,y,cost;
for (int i= ;i<=n ;i++)
{
for (int j= ;j<m ;j++)
{
scanf("%d",&cost);
x= i== ? from : (*(i-)-)*(m-)+j;
y= i==n ? to : (*(i-))*(m-)+j;
add(x,y,cost);
}
}
for (int i= ;i<n ;i++)
{
for (int j= ;j<=m ;j++)
{
scanf("%d",&cost);
x= j== ? to : (*(i-))*(m-)+j-;
y= j==m ? from : (*(i-))*(m-)+j-+m;
add(x,y,cost);
}
}
for (int i= ;i<n ;i++)
{
for (int j= ;j<m ;j++)
{
scanf("%d",&cost);
x=(*(i-))*(m-)+j;
y=(*(i-)+)*(m-)+j;
add(x,y,cost);
}
}
Dijkstra(from,to);
}
return ;
}
BZOJ 1001: [BeiJing2006]狼抓兔子 最小割的更多相关文章
- [bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...
- bzoj 1001 [BeiJing2006]狼抓兔子——最小割转最短路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 #include<cstdio> #include<cstring& ...
- BZOJ.1001.[BeiJing2006]狼抓兔子(最小割ISAP)
题目链接 为什么这题网络流这么快,海拔那题就那么慢.. //119968kb 544ms //路不是有向的,所以要建四条边..既然如此就直接将反向边的流量设为w了.(or MLE...) #inclu ...
- BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)
题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
- BZOJ 1001: [BeiJing2006]狼抓兔子【最大流/SPFA+最小割,多解】
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 23822 Solved: 6012[Submit][ ...
- BZOJ 1001: [BeiJing2006]狼抓兔子
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 20029 Solved: 4957[Submit][ ...
- BZOJ1001: [BeiJing2006]狼抓兔子 [最小割 | 对偶图+spfa]
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 19528 Solved: 4818[Submit][ ...
- bzoj1001: [BeiJing2006]狼抓兔子 -- 最小割
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Description 现在小朋友们最喜欢的"喜羊羊与灰太狼 ...
- BZOJ 1001 [BeiJing2006]狼抓兔子 (UVA 1376 Animal Run)
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 24727 Solved: 6276[Submit][ ...
随机推荐
- Java编程性能优化
1尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面: 第一,控制资源的使用,通过线程同步来控制资 ...
- php 安装redis扩展
大家可以去http://code.google.com/p/redis/downloads/list这个地址找最近的下载wget http://redis.googlecode.com/files/r ...
- Android中内容观察者的使用---- ContentObserver类详解
详解:http://blog.csdn.net/qinjuning/article/details/7047607
- System.Transaction (TransactionScope) 与 可提升 (Promotable) 交易
这是我的备份,原文请看 http://www.dotblogs.com.tw/mis2000lab/archive/2014/11/12/transactionscope_promotable_tr ...
- gRPC Client的负载均衡器
一.gRPC是什么? gRPC是一个高性能.通用的开源RPC框架,其由Google主要面向移动应用开发并基于HTTP/2协议标准而设计,基于ProtoBuf(Protocol Buffers)序列化协 ...
- Win10下IIS配置图解、MVC项目发布图解、IIS添加网站图解
Win10下IIS配置 .找到控制面板:[开始]菜单鼠标右击,打开[控制面板] .打开控制面板,点击[程序],点击[启用或关闭Windows功能] 下一步,点击[启用虎关闭Windows功能] . 开 ...
- 几条sql语句
1.行.列转换 --行转列 ),科目 ),分数 int) ) ) ) ) ) ) ) ) ) --方法1 select 姓名, end) as 语文, end) as 数学, end) as 物理 f ...
- Kindeditor小改动
1.Flash上传时默认的大小为550*400,修改Kindeditor/plugins/flash/flash.js里的 self.plugin.flash内容,根据自己的页面直接设置默认大小,方便 ...
- WPF.UIShell UIFramework之自定义窗口的深度技术 - 模态闪动(Blink)、窗口四边拖拽支持(WmNCHitTest)、自定义最大化位置和大小(WmGetMinMaxInfo)
无论是在工作和学习中使用WPF时,我们通常都会接触到CustomControl,今天我们就CustomWindow之后的一些边角技术进行探讨和剖析. 窗口(对话框)模态闪动(Blink) 自定义窗口的 ...
- poj 2153 Rank List
原题链接:http://poj.org/problem?id=2153 简单题,map,平衡树均可.. map: #include<algorithm> #include<iostr ...