http://blog.csdn.net/u011318735/article/details/17424349

既然学习了USB,那就必须的搞懂USB设备与USB主机数据是怎么通讯的。这里主要讲设备端,因为我们的代码是做USB设备用的。

我们需要必须要定义了USB中断。起始在STM32的中断向量表中给USB两个中断,我们可以在stm32f10x.h中找到这两个中断:

USB_HP_CAN1_TX_IRQn = 19, /*!< USB Device High Priority or CAN1 TX Interrupts */ USB_LP_CAN1_RX0_IRQn = 20, /*!< USB Device Low Priority or CAN1 RX0 Interrupts */

这两个中断是USB与CAN复用的中断,在做USB用时,表示USB设备的高优先级与低优先级中断。在我的工程中,我选择用低优先级的USB中断。代码如下:

void USB_LP_CAN1_RX0_IRQHandler(void) { USB_Istr(); }

中断服务程序很简单,就是在发生中断的时候调用USB_istr()函数。USB_istr()这个函数我们之前说过的,在usb_istr.c中定义的。这个函数处理ISTR中断状态寄存器中定义的中断,包括:CTR正确传输中断、RESET复位中断,DOVR分组缓冲溢出中断、ERR错误中断、WAKEUP中断、SUSP挂起中断、SOF帧首中断、ESOF期望帧首中断。这里重点是CTR中断,在USB在正确发送或正确接收数据后,USB模块自动回将ISTR寄存器的该位置1,触发中断CTR中断。在USB_istr()中CTR的处理代码如下:

#if (IMR_MSK & ISTR_CTR) //正确传输中断CTR标志 if (wIstr & ISTR_CTR & wInterrupt_Mask)//读出的中断标志是CRT中断标志,且CRT中断使能了 { CTR_LP(); //调用正确传输中断服务程序 #ifdef CTR_CALLBACK CTR_Callback(); //当定义了CTR_CALLBACK,则调用CTR_Callback,像钩子函数一样,在发生CRT中断时做点什么 #endif }

首先要解释下 #if (IMR_MSK & ISTR_CTR) 这句话。

#define IMR_MSK (CNTR_CTRM | CNTR_WKUPM | CNTR_SUSPM | CNTR_ERRM | CNTR_SOFM \ | CNTR_ESOFM | CNTR_RESETM )
这是IMR_MSK的定义,表示包含所有中断的掩码,IMR_MSK & ISTR_CTR表示:如果ISTR_CTR是规定的中断类别,则编译#if与#endif之间的代码。很明显这里符合。然后,判断下从CNTR寄存器中读出来的中断值是CRT中断,且该中断已经在CNTR中使能了。接着调用CTR_LP()函数处理,如果定义了CTR_CALLBACK,则调用CTR_Callback()函数,该函数是个钩子函数,让用户在正确接收到数据后能够做些什么,比如说亮下灯或通过串口打印些消息。
这里需要着分析下CTR_LP()这个函数在usb_int.c中定义。代码如下:

/******************************************************************************* * Function Name : CTR_LP. * Description : 低优先级的端点正确传输中断服务程序 * Input : None. * Output : None. * Return : None. *******************************************************************************/ void CTR_LP(void) { __IO uint16_t wEPVal = 0; while (((wIstr = _GetISTR()) & ISTR_CTR) != 0) //读取中断状态寄存器的值,看是否是CRT(正确传输中断) { EPindex = (uint8_t)(wIstr & ISTR_EP_ID); //获取产生中断的端点号, if (EPindex == 0) //如果端点0 { SaveRState = _GetENDPOINT(ENDP0); //读取端点0的状态寄存器 SaveTState = SaveRState & EPTX_STAT; //保存端点0发送状态 SaveRState &= EPRX_STAT; //保存端点0接收状态 _SetEPRxTxStatus(ENDP0,EP_RX_NAK,EP_TX_NAK);//设置端点0对主机以NAK方式响应所有的接收和发送请求 if ((wIstr & ISTR_DIR) == 0) //如果是IN令牌 { _ClearEP_CTR_TX(ENDP0); //清除端点0正确发送标志位 In0_Process(); //处理IN令牌包 /* before terminate set Tx & Rx status */ _SetEPRxTxStatus(ENDP0,SaveRState,SaveTState);//在传输之前设置端点0接收发送状态位 return; } else //OUT令牌 { wEPVal = _GetENDPOINT(ENDP0); //获取端点0的端点寄存器的值 if ((wEPVal &EP_SETUP) != 0) //SETUP分组传输完成标志位 { _ClearEP_CTR_RX(ENDP0); //清除端点0的接收标志位 Setup0_Process(); //端点0建立阶段的数据处理 _SetEPRxTxStatus(ENDP0,SaveRState,SaveTState);//设置端点0阶接收发送标志位 return; } else if ((wEPVal & EP_CTR_RX) != 0) //正确接收标志位 { _ClearEP_CTR_RX(ENDP0); //清除端点0正确标志位 Out0_Process(); //处理OUT令牌包 _SetEPRxTxStatus(ENDP0,SaveRState,SaveTState);//设置端点0的接收发送状态 return; } } }/* if(EPindex == 0) */ else //如果非0端点 { wEPVal = _GetENDPOINT(EPindex); //获取该端点的端点寄存器的值 if ((wEPVal & EP_CTR_RX) != 0) //正确接收标志 { _ClearEP_CTR_RX(EPindex); //清除端点正确接收标志 (*pEpInt_OUT[EPindex-1])(); //调用注册过的端点OUT处理函数 } /* if((wEPVal & EP_CTR_RX) */ if ((wEPVal & EP_CTR_TX) != 0) //正确发送标志 { _ClearEP_CTR_TX(EPindex); //清除正确发送标志 (*pEpInt_IN[EPindex-1])(); //调用注册过的端点IN处理函数 } /* if((wEPVal & EP_CTR_TX) != 0) */ }/* if(EPindex == 0) else */ }/* while(...) */ }

这个函数首先会判断是否真的CTR中断,如果是,执行while()中的代码,用EPindex来保存产生中断的端点号。EPindex为0表示是端点0产生的中断,说明此时USB还处于枚举阶段。EPindex不为0,表示枚举已经成功了,USB处于正常工作状态。

在枚举阶段,SaveRState保存端点0寄存器的值,接着SaveTState = SaveRState & EPTX_STAT;和SaveRState &=  EPRX_STAT;这两句,SaveTState保存当前发送端点0的状态, SaveRState 保存当前接收端点的状态。接着设置接收端点0为NAk状态,发送端点0也设置成NAK状态,也就是说当主机发送任何数据,从机只以NAK回应,从机也只能发送NAK数据,即不允许在数据处理阶段进行数据通讯。然后判断是输入还是输出。如果是输入(注意这里的输入是相对于主机来说的)则清除端点寄存器的EP_CTR_TX标志位,并且调用IN令牌包处理函数In0_Process()(在usb_core.c中定义)。如果是输出(注意这里的输出是相对于主机来说的),则还要判断接收到是SETUP包还是OUT令牌包,如果是SETUP包,清除端点0寄存器的EP_SETUP位,并且调动SETUP处理函数Setup0_Process(),同时还要回复原来的接发端点的状态,准备处理下一次的中断处理。如果是OUT令牌包,清除端点0寄存器的EP_CRT_RX位,调用OUT处理函数Out0_Process(),同时还要回复原来接法端口的状态,准备处理下一次的中断处理。
在工作阶段或者说是非枚举阶段,首先要判断下是EP_CTR_RX还EP_CTR_TX标志,如果是EP_CTR_RX正确接收标志,则清除该标志,调用对应端点的OUT处理函数(*pEpInt_OUT[EPindex-1])()(在usb_istr中有注册过),如果是EP_CTR_TX标志,则清除该标志,调用对应端点的IN处理函数(*pEpInt_IN[EPindex-1])()(在usb_istr中有注册过)。
在usb_istr.c中非别注册了7个端点输入函数和端点输出函数。如下:

/*定义指向指针的函数指针数组,函数指针分别指向7个端点输入服务程序*/ void (*pEpInt_IN[7])(void) = { EP1_IN_Callback, EP2_IN_Callback, EP3_IN_Callback, EP4_IN_Callback, EP5_IN_Callback, EP6_IN_Callback, EP7_IN_Callback, }; /*定义指向指针的函数指针数组,函数指针分别指向7个端点输出服务程序*/ void (*pEpInt_OUT[7])(void) = { EP1_OUT_Callback, EP2_OUT_Callback, EP3_OUT_Callback, EP4_OUT_Callback, EP5_OUT_Callback, EP6_OUT_Callback, EP7_OUT_Callback, };

而这些函数的定义在usb_endp.c中,我们拿EP1_OUT_Callback()函数分析。

/******************************************************************************* * Function Name : EP1_OUT_Callback. * Description : 端点1输出回调函数 * Input : None. * Output : None. * Return : None. *******************************************************************************/ void EP1_OUT_Callback(void) { PMAToUserBufferCopy(USB_Receive_Buffer, ENDP1_RXADDR, REPORT_COUNT); //PMA缓冲区接收到的数据拷贝到用户自定义缓冲区USB_Receive_Buffer中 SetEPRxStatus(ENDP1, EP_RX_VALID); //设置端点的接收状态为有效,因为端点接收到数据后会端点状态自动设置成停止状态 USB_Received_Flag=1; //设置接收到数据标志位 }

这个函数的工作很简单,首先因为数输出端点,是接收数据的,而USB模块接收到的数据又是暂存在PAM双缓冲区中,所以要线把数据从PMA中读取出来,放到用户自己缓冲区中。接着设置端点接收状态有效,因为当接收数据后,端点就会被关闭。最后置位接收带数据标志。

 
以上就是USB设备的接收的流程。接下去讲讲发送流程。发送比接收简单多了看看下面的代码就知道了。

/** * @brief 通过USB发送数据 * @param data 数据存储首地址 * @param dataNum 发送的数据字节数 * @retval 发送的字节数 */ uint32_t USB_SendData(uint8_t *data,uint32_t dataNum) { //将数据通过USB发送出去 UserToPMABufferCopy(data, ENDP2_TXADDR, dataNum);//拷贝数据到PMA中 SetEPTxCount(ENDP2, REPORT_COUNT); //从端点2发送64字节数据 SetEPTxValid(ENDP2); //使能端点2的发送状态 return dataNum; }

把要发送的数据拷贝到PMA中,之后设置端点计数,使能下端点,数据就发送出去了。

 
 
总结下:
数据发送:UserToPMABufferCopy--->SetEPTxCount--->SetEPTxValid
数据接收:USB_LP_CAN1_RX0_IRQHandler--->USB_Istr---->CTR_LP--->EPx_OUT_Callback

stm32 usb数据接收与数据发送程序流程分析的更多相关文章

  1. 65、Spark Streaming:数据接收原理剖析与源码分析

    一.数据接收原理 二.源码分析 入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法 ### overr ...

  2. uboot学习之uboot-spl的程序流程分析

    uboot-spl的程序流程主要包含下面的几个函数: _start->reset->save_boot_params->cpu_init_crit->lowlevel_init ...

  3. 01 . Go框架之Beego简介部署及程序流程分析

    Beego简介 beego是一个使用Go语言来开发WEB引用的GoWeb框架,该框架起始于2012年,由一位中国的程序员编写并进行公开,其目的就是为大家提供一个高效率的web应用开发框架.该框架采用模 ...

  4. WordPress程序流程分析

    index.php 统一入口文件 包含wp-blog-heaer.php 包含wp-load.php 包含wp-config.php 数据库.语言包配置等 包含wp-setting.php 对各种运行 ...

  5. gsoap框架下的onvif程序流程分析

    SOAP_FMAC5 int SOAP_FMAC6 soap_serve(struct soap *soap) { do { unsigned int k = soap->max_keep_al ...

  6. HTC VIVE SDK 中的例子 hellovr_opengl 程序流程分析

    最近Vive的VR头盔设备很火,恰逢项目需求,所以对 SDK 中的例子 hellovr_opengl 做了比较细致的代码分析,先将流程图绘制如下,便于大家理解. 在ViVe头盔中实现立体效果的技术核心 ...

  7. 翻翻git之---自己定义邮件发送buttonSendButton(流程分析,实现思路能够学习下)

    转载请注明出处:王亟亟的大牛之路 距离过春节还有1天.继续这一系列的git翻料之旅. 昨天的工具类真的非常棒,这里再推崇一下 传送门:http://blog.csdn.net/ddwhan0123/a ...

  8. Spark Streaming 数据接收过程

    SparkStreaming 源码分析 一节中从源码角度,描述了Streaming执行时代码的调用过程.下边就接收转化阶段过程再简单分析一下,为分析backpressure作准备. SparkStre ...

  9. STM32 UART DMA实现未知数据长度接收

    串口通信是经常使用到的功能,在STM32中UART具有DMA功能,并且收发都可以使用DMA,使用DMA发送基本上大家不会遇到什么问题,因为发送的时候会告知DMA发送的数据长度,DMA按照发送的长度直接 ...

随机推荐

  1. 安装CouchbaseClient的过程中提示 Error 1935.An error occurred during the installation of assembly;Error:-1603 fatal error during installation

    安装过程中提示报错   点击确定后 安装程序会接着回滚,又提示报错如下       Error 1935的解决方法是下载一个微软的补丁. http://support.microsoft.com/de ...

  2. 理解matplotlib绘图

    matplotlib是基于Python语言的开源项目,旨在为Python提供一个数据绘图包.Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件.它能让使用者很轻松地将数据图形化 ...

  3. (五)用正则化(Regularization)来解决过拟合

    1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...

  4. 学习macos常用的一些快捷键笔记

    学习mac 操作系统使用笔记 Dock功能学习 类似快捷图标一样 Command+q quit a program Dock上添加与删除都用拖动 command+delete 删除文件 shift+c ...

  5. Dataguard后台进程解析

    Log Transport Service   主节点上,日志传输服务主要使用如下几个进程: 1.LGWR     LGWR搜集事务日志,并且更新联机日志.在同步模式下,LGWR直接将redo信息直接 ...

  6. 【原创】搭建Nginx(负载均衡)+Redis(Session共享)+Tomcat集群

    为什么移除首页?哪里不符合要求?倒是回我邮件啊! 一.环境搭建 Linux下Vagrant搭建Tomcat7.Java7 二.Nginx的安装配置与测试 *虚拟机下转至root sudo -i 1)下 ...

  7. 深入理解JavaScript闭包(closure)

    最近在网上查阅了不少javascript闭包(closure)相关的资料,写的大多是非常的学术和专业.对于初学者来说别说理解闭包了,就连文字叙述都很难看懂.撰写此文的目的就是用最通俗的文字揭开Java ...

  8. 阻塞、非阻塞的概念和select函数的阻塞功能

    其它文档: http://www.cnitblog.com/zouzheng/archive/2010/11/25/71711.html (1)阻塞block     所谓阻塞方式block,顾名思义 ...

  9. [转] C#中的Dictionary的使用

    txw1958 的 原文 说明    必须包含名空间System.Collection.Generic     Dictionary里面的每一个元素都是一个键值对(由二个元素组成:键和值)     键 ...

  10. yii框架AR详解

    虽 然Yii DAO可以处理事实上任何数据库相关的任务,但很可能我们会花费90%的时间用来编写一些通用的SQL语句来执行CRUD操作(创建,读取,更新和删除). 同时我们也很难维护这些PHP和SQL语 ...