题目:

题目描述

已知多项式方程:

a0+a1x+a2x2+…+anxn=0

求这个方程在[1,m]内的整数解(n 和 m 均为正整数)。

输入格式

输入共 n+2 行。 
第一行包含 2 个整数 n、m,每两个整数之间用一个空格隔开。 
接下来的 n+1 行每行包含一个整数,依次为 a0,a1,a2, … ,an 。

输出格式

第一行输出方程在[1,m]内的整数解的个数。 
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,m]内的一个整数解。

样例数据 1

输入  [复制]

2 10 

-2 
1

输出

1

题解

  这道题不得不说思想很巧···以前已知没有遇到过···
  首先,如果等式两边模上一个数后依然为0那么原来的等式是有可能成立的··因此我们可以取几个质数然后看每次算完后模这几个质数下来的答案是否都为0,如果是的话说明原来等式可能成立(概率很大)
  但是如果这样从1——m一个一个枚举暴力算还是会超时的···
  我们还可以发现一个性质··就是如果一个x带入等式模质数p为0,那么x+k*p带入肯定等式模质数p肯定也一定为0··因此我们枚举小于质数的数计算即可·····这样复杂度就是k*p*n的,其中p为最大质数的大小··k为选择的质数的数量····注意质数选小一点···10000左右即可
  但这道题我写出来常树很大··怎么优化都不能过bzoj··只能过自己学校的···如果要参考我代码的同学还是算了吧···

代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
using namespace std;
const int N=1e4+;
const int M=;
const int P=1e6+;
int pri[]={,,,,,};
int a[M][],n,m,pre[][],jud[][],ans[P],cnt=;
char s[N];
inline int R()
{
char c;int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar()) f=(f<<)+(f<<)+c-'';
return f;
}
inline bool check(int op,int x)
{
long long ans=;
for(register int i=;i<=n;i++)
ans=(ans+pre[op][i]*a[i][op])%pri[op];
if(ans<) ans+=pri[op];
return ans==;
}
int main()
{
//freopen("a.in","r",stdin);
n=R(),m=R();
for(register int i=;i<=n;i++)
{
bool flag=false;
scanf("%s",s+);int len=strlen(s+);
if(s[]=='-') flag=true;
else
for(int j=;j<=;j++) a[i][j]=s[]-'';
for(register int j=;j<=len;j++)
for(register int k=;k<=;k++)
a[i][k]=(a[i][k]*%pri[k]+s[j]-'')%pri[k];
if(flag)
for(int j=;j<=;j++) a[i][j]=-a[i][j];
}
for(register int i=;i<=;i++)
for(register int j=;j<pri[i];j++)
{
pre[i][]=;
for(int k=;k<=n;k++) pre[i][k]=pre[i][k-]*j%pri[i];
if(check(i,j)) jud[i][j]=true;
}
for(register int i=;i<=m;i++)
{
bool flag=true;
for(register int j=;j<=;j++)
if(!jud[j][i%pri[j]])
{
flag=false;break;
}
if(flag) ans[++cnt]=i;
}
printf("%d\n",cnt);
for(register int i=;i<=cnt;i++) printf("%d\n",ans[i]);
return ;
}
  

刷题总结——解方程(NOIP2014)的更多相关文章

  1. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  2. leetcode刷题-37解数独

    题目 编写一个程序,通过已填充的空格来解决数独问题. 一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次.数字 1-9 在每一列只能出现一次.数字 1-9 在每一个以粗实线分隔的 3x ...

  3. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  4. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  5. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  6. 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)

    心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...

  7. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  8. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  9. 【NOIP2014】解方程

    题目描述 已知多项式方程 \[a_0 + a_1x + a_2x^2 + \dots +a_nx^n=0\] 求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数). 输入输出格 ...

随机推荐

  1. cdoj 414 八数码 (双向bfs+康拓展开,A*)

    一道关乎人生完整的问题. DBFS的优越:避免了结点膨胀太多. 假设一个状态结点可以扩展m个子结点,为了简单起见,假设每个结点的扩展都是相互独立的. 分析:起始状态结点数为1,每加深一层,结点数An ...

  2. 禁止MySQL开机自动启动的方法

    这几天发现电脑卡机变慢了,还有一些卡,发现每次开机MySQL都会自动启动(明明我安装的时候选择了不开机自启,任务管理器启动列表中也没有,但就是自启了...) 1.打开服务列表 有两种方法,一是快捷键 ...

  3. eclipse中代码注释及其他常用快捷键

    html代码注释/取消注释             Ctrl + Shift + c php代码注释/取消注释                 Ctrl + / (4)Ctrl+Shift+/ 说明: ...

  4. 《毛毛虫团队》第七次作业:团队项目设计完善&编码

    一:实验名称:团队项目设计完善&编码 二:实验目的与要求 掌握软件编码实现的工程要求. 三:实验步骤 任务一:团队软件项目设计完善: 任务二:团队软件项目编码实现: 任务三:在团队博客发布博文 ...

  5. HTML DOM Frame 的 src

    定义和用法 src 属性可设置或返回应当被载入框架中的文档的 URL. 该属性只是 HTML 的 <frame> 标记的一个对应,并不是 Window.location 这样的 Locat ...

  6. redis基础知识学习

    数据结构:1.String 添加: set key value get key getset key value (先get再set) incr key (key对应value原子性递增1) decr ...

  7. iOS应用架构谈part4-本地持久化方案及动态部署

    前言 嗯,你们要的大招.跟着这篇文章一起也发布了CTPersistance和CTJSBridge这两个库,希望大家在实际使用的时候如果遇到问题,就给我提issue或者PR或者评论区.每一个issue和 ...

  8. vue 正则判断

    value=value.replace(/[^\d.]/g,'').replace(/\.{2,}/g,'.').replace('.','$#$').replace(/\./g,'').replac ...

  9. Ubuntux下简单设置vim

    我自己在vim下的设置,基本写简单脚本用的,在~/.vimrc作出如下设置 syntax on "高亮 set nu "行号显示 set smartindent "基于a ...

  10. 使用jmeter做简单的压测(检查点、负载设置、聚合报告)

    1.添加断言(检查点) 在需要压测的接口下添加--断言--响应断言,取接口响应中包含有的数据即可 检查点HTTP请求-->断言-->响应断言1.名称.注释2.Apply to//作用于哪里 ...