题目描述

小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏。

每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且
让小葱从自己手中的小葱苗里选出一些小葱苗使得选出的小葱苗上的数字的异或和最大。
这种小问题对于小葱来说当然不在话下,但是他的身边没有电脑,于是他打电话给同为Oi选手的你,你能帮帮他吗?
你只需要输出最大的异或和即可,若小葱手中没有小葱苗则输出0。

输入

第一行一个正整数n表示总时间;第二行n个整数a1,a2...an,若ai大于0代表给了小葱一颗数字为ai的小葱苗,否则代表从小葱手中拿走一颗数字为-ai的小葱苗。

输出

输出共n行,每行一个整数代表第i个时刻的最大异或和。

样例输入

6
1 2 3 4 -2 -3

样例输出

1
3
3
7
7
5


题解

线段树+高斯消元动态维护线性基

由于线性基不支持删除操作,所以我们需要离线来处理。

我们注意到每个数出现的时间都是一段连续的区间,所以可以使用map维护每个数的开始时间和结束时间,并在这一段区间上插入这个数。

我们肯定不能暴力在每个时间点上插入,所以需要线段树来降低时间复杂度。

在线段树的每个节点上开一个vector,存储这个区间的线性基。对于每个操作,在对应的vector上使用高斯消元动态维护线性基。

查询时,可以遍历整棵线段树,对于叶子结点直接使用贪心的方法查询并输出。但是如果将父亲节点的线性基暴力插入到儿子节点的话会导致MLE,于是需要记录一个新的节点,每次相当于将该节点的线性基插入到这个新的节点中。具体见代码。

时间复杂度$O(n\log^2n)$

#include <cstdio>
#include <algorithm>
#include <vector>
#include <map>
#define N 500010
using namespace std;
struct data
{
vector<int> v;
void insert(int x)
{
int i;
for(i = 0 ; i < v.size() ; i ++ )
if((x ^ v[i]) < x)
x ^= v[i];
if(x)
{
v.push_back(x);
for(i = v.size() - 1 ; i ; i -- )
{
if(v[i] > v[i - 1]) swap(v[i] , v[i - 1]);
else break;
}
}
}
int calc()
{
int i , ans = 0;
for(i = 0 ; i < v.size() ; i ++ )
if((ans ^ v[i]) > ans)
ans ^= v[i];
return ans;
}
}S[N << 2] , emp;
map<int , int> f;
int a[N];
void update(int b , int e , int a , int l , int r , int x)
{
if(b <= l && r <= e)
{
S[x].insert(a);
return;
}
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , a , l , mid , x << 1);
if(e > mid) update(b , e , a , mid + 1 , r , x << 1 | 1);
}
void query(int l , int r , int x , data t)
{
int i , mid = (l + r) >> 1;
for(i = 0 ; i < S[x].v.size() ; i ++ ) t.insert(S[x].v[i]);
if(l == r)
{
printf("%d\n" , t.calc());
return;
}
query(l , mid , x << 1 , t) , query(mid + 1 , r , x << 1 | 1 , t);
}
int main()
{
int n , i , x;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &a[i]);
if(a[i] > 0) f[a[i]] = i;
else update(f[-a[i]] , i - 1 , -a[i] , 1 , n , 1) , f[-a[i]] = 0;
}
for(i = 1 ; i <= n ; i ++ )
if(a[i] > 0 && f[a[i]])
update(f[a[i]] , n , a[i] , 1 , n , 1);
query(1 , n , 1 , emp);
return 0;
}

【bzoj4184】shallot 线段树+高斯消元动态维护线性基的更多相关文章

  1. 【bzoj4568】[Scoi2016]幸运数字 树上倍增+高斯消元动态维护线性基

    题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一些旅行者希望游 ...

  2. HDU3949:XOR(高斯消元)(线性基)

    传送门 题意 给出n个数,任意个数任意数异或构成一个集合,询问第k大个数 分析 这题需要用到线性基,下面是一些资料 1.高斯消元&线性基&Matirx_Tree定理 笔记 2.关于线性 ...

  3. bzoj2115 [Wc2011] Xor——高斯消元 & 异或线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 异或两次同一段路径的权值,就相当于没有走这段路径: 由此可以得到启发,对于不同的走法, ...

  4. BZOJ 4184 线段树+高斯消元

    思路: 线段树表示的是时间 每回最多log个段 区间覆盖 一直到叶子 的线性基 xor 一下 就是答案 一开始没有思路 看了这篇题解 豁然开朗 http://www.cnblogs.com/joyou ...

  5. BZOJ 4004: [JLOI2015]装备购买 [高斯消元同余 线性基]

    和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #incl ...

  6. 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基

    题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...

  7. 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 839  Solved: 490[Submit][Stat ...

  8. BZOJ 2466: [中山市选2009]树( 高斯消元 )

    高斯消元解异或方程组...然后对自由元进行暴搜.树形dp应该也是可以的... ------------------------------------------------------------- ...

  9. 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组

    [题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...

随机推荐

  1. Linux下解压ZIP压缩包乱码问题

    并不是所有ZIP文件都是乱码的而且导致解压失败,只有windows下压缩的ZIP在Linux中会出现这种情况.这是因为Windows和Linux下用的字符编码不同.Windows下的编码格式为GBK, ...

  2. 苹果ATS Win2008 R2 IIS7.5 HTTPS 证书的那些可能遇到的坑

    前言:工作这么多年,每一次要弄https 都和苹果有关,上一次是苹果app的企业安装形式,ios7后 .plist 文件必须在一个https路径. 这一次则是苹果的ATS计划,无疑这是在推动网络安全上 ...

  3. codeforce Gym 100500C ICPC Giveaways(水)

    读懂题意就是水题,按照出现次数对下标排一下序,暴力.. #include<cstdio> #include<algorithm> #include<cstring> ...

  4. tpcc-mysql的安装和使用

    tpcc-mysql介绍 TPC(Tracsaction Processing Performance Council) 事务处理性能协会是一个评价大型数据库系统软硬件性能的非盈利的组织,TPC-C是 ...

  5. java static block

    java 中 静态块的作用 (一)java 静态代码块 静态方法区别一般情况下,如果有些代码必须在项目启动的时候就执行的时候,需要使用静态代码块,这种代码是主动执行的;需要在项目启动的时候就初始化,在 ...

  6. 《剑指offer》39题—数组中出现次数超过一半的数字

    题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2. ...

  7. alibaba druid监控页面的使用配置

    一.Maven中添加Durid连接池依赖 <!-- druid连接池 --> <dependency> <groupId>com.alibaba</group ...

  8. Java多线程 编写三各类Ticket、SaleWindow、TicketSaleCenter分别代表票信息、售票窗口、售票中心。 售票中心分配一定数量的票,由若干个售票窗口进行出售,利用你所学的线程知识来模拟此售票过程。

    package com.swift; import java.util.ArrayList; import java.util.HashMap; import java.util.List; impo ...

  9. ios 设计模式总结

    设计模式:备注:消息传递模型(Message Passing)是Objective-C语言的核心机制.在Objective-C中,没有方法调用这种说法,只有消息传递.在C++或Java中调用某个类的方 ...

  10. Jquery之 Ajax /json

    前言: Ajax = Asynchronous JavaScript and XML(异步的JavaScript和XML) Ajax不是新的编程语言,而是一种使用现有标准的新方法. Ajax最大的优点 ...