hdu2586 LCA带边权的Targan算法
http://acm.hdu.edu.cn/showproblem.php?pid=2586
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int MAXN=40010;
const int MAXQ=40010;
int n;
//并查集部分
int F[MAXN];//初始为-1
int find(int x)
{
if(F[x]==-1)return x;
return F[x]=find(F[x]);
}
int bing(int u,int v)
{
int t1=find(u);
int t2=find(v);
if(t1!=t2)
{
F[t1]=t2;
}
}
//建图部分
bool vis[MAXN];
int ancestor[MAXN];
struct Edge
{
int to,next;
int val;//每条边的权重
}edge[MAXN<<2];
int head[MAXN],tot;//head初始为-1
void add_edge(int u,int v,int val)
{
edge[tot].next=head[u];
edge[tot].to=v;
edge[tot].val=val;
head[u]=tot++;
// edge[tot].next=head[v];
// edge[tot].to=u;
// edge[tot].val=val;
// head[v]=tot++;
}
int dist[MAXN];
bool flag[MAXN];
//查询部分
struct Query
{
int q,next;
int index;//查询标号
}query[MAXQ<<1];
int answer[MAXQ];//存储每个查询的结果
int h[MAXQ];
int tt;
int Q;
void add_query(int u,int v,int index)
{
query[tt].next=h[u];
query[tt].q=v;
query[tt].index=index;
h[u]=tt++;
query[tt].next=h[v];
query[tt].q=u;
query[tt].index=index;
h[v]=tt++;
}
//LCA部分
void init()
{
tot=0;
memset(F,-1,sizeof(F));
memset(vis,false,sizeof(vis));
memset(ancestor,0,sizeof(ancestor));
memset(head,-1,sizeof(head));
memset(h,-1,sizeof(h));
memset(dist,0,sizeof(dist));
memset(flag,false,sizeof(flag));
tt=0;
}
void LCA(int u,int val)
{
ancestor[u]=u;
vis[u]=true;
dist[u]=val;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
int weight=edge[i].val;
if(vis[v])continue;
LCA(v,val+weight);
bing(u,v);
ancestor[find(u)]=u;
}
for(int i=h[u];i!=-1;i=query[i].next)
{
int v=query[i].q;
if(vis[v])
{
// cout<<ancestor[find(v)]<<endl;
answer[query[i].index]=dist[v]+dist[u]-2*dist[ancestor[find(v)]];
}
}
}
int root;
int main()
{
int T,u,v,val;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&Q);
init();
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&u,&v,&val);
flag[v]=true;
add_edge(u,v,val);
add_edge(v,u,val);
}
for(int i=0;i<Q;i++)
{
scanf("%d%d",&u,&v);
add_query(u,v,i);
}
//找到没有入度的节点作为root
for(int i=1;i<=n;i++)
if(!flag[i])
{
root=i;
break;
}
LCA(root,0);
for(int i=0;i<Q;i++)
{
printf("%d\n",answer[i]);
}
}
}
/*
2
3 2
1 2 10
3 1 15
1 2
2 3
*/
hdu2586 LCA带边权的Targan算法的更多相关文章
- 图之单源Dijkstra算法、带负权值最短路径算法
1.图类基本组成 存储在邻接表中的基本项 /** * Represents an edge in the graph * */ class Edge implements Comparable< ...
- hdu2586(lca模板 / tarjan离线 + RMQ在线)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意: 给出一棵 n 个节点的带边权的树, 有 m 个形如 x y 的询问, 要求输出所有 x, ...
- Expm 10_1 带负权值边的有向图中的最短路径问题
[问题描述] 对于一个带负权值边的有向图,实现Bellman-Ford算法,求出从指定顶点s到其余顶点的最短路径,并判断图中是否存在负环. package org.xiu68.exp.exp10; p ...
- [BZOJ 4025]二分图(线段树分治+带边权并查集)
[BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...
- 带鉴权信息的SIP呼叫
带鉴权信息的SIP呼叫 INVITE sip:1000@192.168.50.34SIP/2.0 Via: SIP/2.0/UDP192.168.50.32:2445;branch=z9hG4bK-d ...
- LCA(最近公共祖先)算法
参考博客:https://blog.csdn.net/my_sunshine26/article/details/72717112 首先看一下定义,来自于百度百科 LCA(Lowest Common ...
- 【BZOJ】2120: 数颜色 带修改的莫队算法
[题意]给定n个数字,m次操作,每次询问区间不同数字的个数,或修改某个位置的数字.n,m<=10^4,ai<=10^6. [算法]带修改的莫队算法 [题解]对于询问(x,y,t),其中t是 ...
- CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。
题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...
- AcWing:240. 食物链(扩展域并查集 or 带边权并查集)
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形. A吃B, B吃C,C吃A. 现有N个动物,以1-N编号. 每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种. 有人用 ...
随机推荐
- jquery特效(6)—判断复选框是否选中进行答题提示
前面有一段时间思想开了小差,跟着师父学习了一段时间才发现差距很大,看来我要奋起直追~\(≧▽≦)/~啦啦啦. 最近公司在做一个项目,需要根据用户选择的选项给出相应的提示,下面来看我写的测试程序的效果: ...
- Gym - 100187E E - Two Labyrinths —— bfs
题目链接:http://codeforces.com/gym/100187/problem/E 题解:一开始做的时候是将两幅图合并,然后直接bfs看是否能到达终点.但这种做法的错的,因为走出来的路对于 ...
- tableView滑动时cell消失
最近做的工程中,出现个奇怪的问题吗,就是上下滑动tableView的时候,cell还未出屏幕就消失了,找了很久找到了原因,是因为界面中需要的cell有很多种,而有的cell的高度是一开始算出来或是固定 ...
- 如何查看ffmpeg支持的编码器和封装格式
查看支持的编码器(也就是-vcodec后面可以接的参数):ffmpeg -codecs 查看支持的封装格式(也就是-f后面可以接的参数):ffmpeg -formats 查看支持的滤镜(也就是-vf后 ...
- 用mingw-w64 编译 x64 位的ffmpeg
http://blog.sina.com.cn/s/blog_6125d067010168dt.html 工作中用到了ffmpeg x64. 发现编译出来x64的ffmpeg,很不容易.特记录下来.原 ...
- hadoop2.X集群安装与应用
可参考此文档:hadoop(2.x)以hadoop2.2为例完全分布式最新高可靠安装文档(非常详细)http://www.aboutyun.com/thread-7684-1-1.html 步骤一:下 ...
- 利用openssl进行base64的编码与解码
openssl可以直接使用命令对文件件进行base64的编码与解码,利用openssl提供的API同样可以做到这一点. 废话不多说,直接上代码了.需要注意的是通过base64编码后的字符每64个字节都 ...
- JavaScript-Tool-导向:jquery.steps-un
ylbtech-JavaScript-Tool-导向:jquery.steps 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 0. http://www.jqu ...
- Spring创建对象的三种方式以及创建时间
创建对象的三种方式: 1.采用默认的构造函数创建 2.采用静态工厂方法 1.写一个静态工厂方法类 public class HelloWorldFactory { public static Hell ...
- Summit Online Judge
题意: 询问将取值在 $[L,R]$ 的若干个整数相加,可以得到 $[x,y]$ 区间内多少个数字. 解法: 只需要考虑求 $[L,R]$ 的数字能凑出 $[1,n]$ 的多少个数字,即可得出答案. ...