Newton 插值法
定义
$f(x)$ 关于 $x_0, x_1, \dots, x_k$ 的 $k$ 阶均差(差商)记做 $ f [x_0, x_1, \dots, x_k] $,均差是递归定义的,有两种等价定义
\begin{align}
f[x] &= f(x)\notag\\
f[x_0,x_1,\dots,x_k] &=\frac{f[x_0, x_1, \dots, x_{k-2}, x_{k-1}] - f[x_1, x_2, \dots, x_{k-1}, x_{k}]}{x_0 - x_k}\label{E:1}\\
&= \frac{ f[x_0, x_1, \dots, x_{k-2}, x_{k-1}] - f [x_0, x_1, \dots, x_{k-2}, x_{k}] } { x_{k-1} - x_{k} }
\end{align}
编程实现时,\eqref{E:1} 式更为方便。令 $d_{i,j} = f [x_i, x_{i+1}, \dots, x_j] $,则有
\[
d_{i,j} = \frac{d_{i,j-1} - d_{i+1, j} } {x_i - x_j}
\]
Newton 插值法的更多相关文章
- 数值分析案例:Newton插值预测2019城市(Asian)温度、Crout求解城市等温性的因素系数
数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 文章目录 数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温 ...
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- Newton插值的C++实现
Newton(牛顿)插值法具有递推性,这决定其性能要好于Lagrange(拉格朗日)插值法.其重点在于差商(Divided Difference)表的求解. 步骤1. 求解差商表,这里采用非递归法(看 ...
- 牛顿插值法——用Python进行数值计算
拉格朗日插值法的最大毛病就是每次引入一个新的插值节点,基函数都要发生变化,这在一些实际生产环境中是不合适的,有时候会不断的有新的测量数据加入插值节点集, 因此,通过寻找n个插值节点构造的的插值函数与n ...
- 拉格朗日插值法——用Python进行数值计算
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...
- Apply Newton Method to Find Extrema in OPEN CASCADE
Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...
- 牛顿方法(Newton's Method)
在讲义<线性回归.梯度下降>和<逻辑回归>中我们提到可以用梯度下降或梯度上升的方式求解θ.在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method). 牛顿方 ...
- PuppetOpenstack Newton Design Summit见闻
PS:技术博客已经好久没有来耕耘了,倒不是懒惰,而是最近一直在忙着写一本关于Openstack自动化部署的书籍,我觉得可能会比单独零散的技术文章更有价值一些. 作为重度拖延症患者,又把本来奥斯汀峰会期 ...
- 全解┃OpenStack Newton发布,23家中国企业上榜(转载)
(转载自Openstack中文社区) 陈, 翔 2016-10-8 | 暂无评论 美国奥斯汀时间10月6日(北京时间6日24点),OpenStack Newton版本正式发布,在可扩展性.可靠性和用户 ...
随机推荐
- opensuse 系统启动自动加载模块
在/etc/modules-load.d目录下面加入想要自动加载的模块,例如自动加载raw模块 创建raw.conf文件,在文件中写入raw. 重启系统就可以了. 手动加载模块方法: modprobe ...
- asp.net 中 UpdataPanel 的使用注意点
1. 在UpdataPanel 前必须加上asp:ScriptManager的控件,保证页面能够正常显示
- 三十三、MySQL 导入数据
MySQL 导入数据 本章节我们为大家介绍几种简单的 MySQL 导出的数据的命令. 1.mysql 命令导入 使用 mysql 命令导入语法格式为: mysql -u用户名 -p密码 < 要导 ...
- C程序设计语言 -- 运算符优先级
1. 运算符分类 算术运算符 [+, -,*, /, % , ++, --] 关系运算符 [>, >=, <, <=] 相等性运 ...
- React学习记录一
半路出家直接上手React,其实有点吃力,所以开始研究create-react-app,从这里下手吧. create-react-app 官方网站:https://github.com/faceboo ...
- 开源数据库中间件-MyCat
开源数据库中间件-MyCat产生的背景 如今随着互联网的发展,数据的量级也是成指数的增长,从GB到TB到PB.对数据的各种操作也是愈加的困难,传统的关系型数据库已经无法满足快速查询与插入数据的需求.这 ...
- Python9-MySQL-pymysql模块-day44
import pymysql user = input('username: ') pwd = input('password: ') conn = pymysql.connect(host=',da ...
- hdu 1257最少拦截系统
最少拦截系统 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能超过前一发的高度.某天,雷达捕捉到敌国的 ...
- windows下的命令
1.cd 现在默认只能在当前盘符中改变目录,如果要改变盘符则需要多加一个/d命令. cd /d d:/git/springTest 2.chdir 显示当前目录名或改变当前目录. CHDIR [/D] ...
- git pull免密码拉取
ssh到服务器上,原来基于public/private key pair的方法不好使了. 1.1 创建文件存储GIT用户名和密码 在%HOME%目录中,一般为C:\users\Administrato ...