[BZOJ1010]玩具装箱toy(斜率优化)
Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个 常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
N<=50000
Solution
斜率优化DP入门题,
常规方程:\(dp[i]=min\{dp[j]+(i-j-1+sum[i]-sum[j]-L)^2\}\)
\(O(N^2)\)显然不行
设\(f[i]=sum[i]+i,C=L+1\)
- 那么\(dp[i]=min\{dp[j]+(f[i]-f[j]-C)^2\},0\leq j <i\)
设在状态 i 中,决策 k ( k > j ) 较决策 j 更优得斜率式:
- \(( dp[ k ] – dp[ j ] + (f[ k ] + C )^2 – ( f[ j ] + C )^2 ) / 2*(f[ k ] – f[ j ] ) ≤ f[ i ]\)
易证,
即可将复杂度优化到 \(O(N)\),开个优先队列维护即可
Code
#include <cstdio>
#include <algorithm>
#define ll long long
#define N 50010
#define squ(x) ((x)*(x))
using namespace std;
int n,C,l,r,q[N];
ll dp[N],f[N];
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
double calc(int x,int y){
return (dp[y]-dp[x]+squ(f[y]+C)-squ(f[x]+C))/(2.0*(f[y]-f[x]));
}
void DP(){
l=1,r=0;q[++r]=0;
for(int i=1;i<=n;++i){
while(l<r&&calc(q[l],q[l+1])<=f[i]) l++;
int t=q[l];
dp[i]=dp[t]+squ(f[i]-f[t]-C);
while(l<r&&calc(q[r],i)<calc(q[r-1],q[r])) r--;
q[++r]=i;
}
}
int main(){
n=read(),C=read()+1;
for(int i=1;i<=n;++i) f[i]=f[i-1]+read();
for(int i=1;i<=n;++i) f[i]+=i;
DP();
printf("%lld\n",dp[n]);
return 0;
}
[BZOJ1010]玩具装箱toy(斜率优化)的更多相关文章
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- 『玩具装箱TOY 斜率优化DP』
玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告
题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...
- bzoj1010: [HNOI2008]玩具装箱toy——斜率优化
方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...
- BZOJ 1010: 玩具装箱toy (斜率优化dp)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- bzoj 1010 玩具装箱toy -斜率优化
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具 ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
随机推荐
- Browser History
History 对象中包含用户(在浏览器窗口中)访问过的URL History 对象是window对象的一部分,可通过window.history属性对其进行访问. 注释:没有应用于History对象 ...
- 前端Json数据模拟神器mockJs使用教程
一般项目做法: <html> <head> <script src="http://requirejs.org/docs/release/2.1.16/comm ...
- JSON.parse() 和 JSON.stringify()的简单介绍
参考地址: https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse ht ...
- Team Foundation 版本控制
与 Visual Studio 的一流集成. 使用富文件和文件夹差异工具突出显示代码更改. 借助强大的可视化跨分支跟踪代码更改. 集成的代码评审工具有助于在签入代码之前获得反馈. 使用托管版本或本地版 ...
- “ipconfig不是内部命令或外部命令”解决方法
第一:用鼠标右键单击“计算机”,在弹出的下拉菜单中选择“属性”. 第二:在系统属性中选择“高级系统设置”.在系统属性对话框中找到其上方的“高级”选项卡,里面有一个“环境变量”按钮,点击进入 第三:在下 ...
- Windows Azure 入门 -- VS 2015部署 ASP.NET网站(项目) 与 数据库
Windows Azure 入门 -- 部署 ASP.NET网站(项目) 与数据库 https://www.dotblogs.com.tw/mis2000lab/2015/12/24/windowsa ...
- 2018.6.22 Java试题测试结果
如何从有数字规律的网址抓取网页并保存在当前目录?假设网址为 http://test/0.xml,其中这个数字可以递增到100. for((i=0;i<100;++i));do wget http ...
- 2018.5.17 oracle函数查询
--*********函数*********** --1.显示当前日期 select sysdate from dual; --2.显示当前日期,格式为****年月日,别名为hday select t ...
- GBDT回归的原理及Python实现
一.原理篇 1.1 温故知新回归树是GBDT的基础,之前的一篇文章曾经讲过回归树的原理和实现.链接如下: 回归树的原理及Python实现 1.2 预测年龄仍然以预测同事年龄来举例,从<回归树&g ...
- AngularJs学习笔记-组件间通讯
组件间通讯 (1)输入属性@Input Tips:子组件属性的改变不会影响到父组件 如下,子组件中stockCode属性发生变化不会引起父组件stock属性的变化 (2)输入属性@Output 子组件 ...