Description

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个 常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

N<=50000

Solution

斜率优化DP入门题,

常规方程:\(dp[i]=min\{dp[j]+(i-j-1+sum[i]-sum[j]-L)^2\}\)

\(O(N^2)\)显然不行

设\(f[i]=sum[i]+i,C=L+1\)

  • 那么\(dp[i]=min\{dp[j]+(f[i]-f[j]-C)^2\},0\leq j <i\)

设在状态 i 中,决策 k ( k > j ) 较决策 j 更优得斜率式:

  • \(( dp[ k ] – dp[ j ] + (f[ k ] + C )^2 – ( f[ j ] + C )^2 ) / 2*(f[ k ] – f[ j ] ) ≤ f[ i ]\)

易证,

即可将复杂度优化到 \(O(N)\),开个优先队列维护即可

Code

#include <cstdio>
#include <algorithm>
#define ll long long
#define N 50010
#define squ(x) ((x)*(x))
using namespace std; int n,C,l,r,q[N];
ll dp[N],f[N]; inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
} double calc(int x,int y){
return (dp[y]-dp[x]+squ(f[y]+C)-squ(f[x]+C))/(2.0*(f[y]-f[x]));
} void DP(){
l=1,r=0;q[++r]=0;
for(int i=1;i<=n;++i){
while(l<r&&calc(q[l],q[l+1])<=f[i]) l++;
int t=q[l];
dp[i]=dp[t]+squ(f[i]-f[t]-C);
while(l<r&&calc(q[r],i)<calc(q[r-1],q[r])) r--;
q[++r]=i;
}
} int main(){
n=read(),C=read()+1;
for(int i=1;i<=n;++i) f[i]=f[i-1]+read();
for(int i=1;i<=n;++i) f[i]+=i;
DP();
printf("%lld\n",dp[n]);
return 0;
}

[BZOJ1010]玩具装箱toy(斜率优化)的更多相关文章

  1. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 『玩具装箱TOY 斜率优化DP』

    玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

  4. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  5. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告

    题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...

  7. bzoj1010: [HNOI2008]玩具装箱toy——斜率优化

    方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...

  8. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. bzoj 1010 玩具装箱toy -斜率优化

    P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具 ...

  10. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

随机推荐

  1. java向上取整向下取整

    向上取整用Math.ceil(double a) 向下取整用Math.floor(double a) 举例: public static void main(String[] args) throws ...

  2. C 碎片五 数组

    构造类型数据是有基本类型数据按照一定规则组成的.数组,结构体,共用体都属于构造类型的数据.数组是有序数据的集合,C语言数组中的每一个元素都属于同一个数据类型,用数组名和下标来唯一确定数组中的元素. 一 ...

  3. centos执行apt-get提示不存在

    在centos下用yum install xxx yum和apt-get的区别 一般来说著名的linux系统基本上分两大类: 1.RedHat系列:Redhat.Centos.Fedora等 2.De ...

  4. mail客户端POP和IMAP协议

    POP-邮局协议 mail客户端如果使用POP协议,那么线上服务器的邮件将会自动下载到客户端. IMAP-因特网消息访问协议 mail客户端如果使用IMAP协议,邮件服务器上的邮件将不会自动下载到客户 ...

  5. 真正理解 git fetch, git pull 以及 FETCH_HEAD(转)

    转自http://www.cnblogs.com/ToDoToTry/p/4095626.html 真正理解 git fetch, git pull 要讲清楚git fetch,git pull,必须 ...

  6. mysqlbinlog 查看执行的sql (row模式)

    记录一下:当bin-log的模式设置为 row时 不仅日志长得快 并且查看执行的sql时 也稍微麻烦一点:1.干扰语句多:2生成sql的编码需要解码. binlog_format=row 直接mysq ...

  7. DataView RowFilter

    DataView类用来表示定制的DataTable的视图. DataTable和DataView的关系是遵循著名的设计模式--文档/视图模式,其中DataTable是文档,而Dataview是视图. ...

  8. 《Ruby on Rails教程》学习笔记

    本文是我在阅读 Ruby on Rails 教程的简体中文版时所做的摘录,以及学习时寻找的补充知识.补充知识主要来自于 Ruby on Rails 實戰聖經. Asset Pipeline 在最新版 ...

  9. POJ 1742 Coins(多重背包,优化)

    <挑战程序设计竞赛>上DP的一道习题. 很裸的多重背包.下面对比一下方法,倍增,优化定义,单调队列. 一开始我写的倍增,把C[i]分解成小于C[i]的2^x和一个余数r. dp[i][j] ...

  10. POJ-2135 Farm Tour---最小费用最大流模板题(构图)

    题目链接: https://vjudge.net/problem/POJ-2135 题目大意: 主人公要从1号走到第N号点,再重N号点走回1号点,同时每条路只能走一次. 这是一个无向图.输入数据第一行 ...