package Graph;

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Set; public class GraphProblem { public static void main(String[] args) {
// TODO Auto-generated method stub }
/*
* 207. Course Schedule
* 2016-3-28 by jyuan
* BFS:典型的拓扑排序。原理也很简单,在一个有向图中,每次找到一个没有前驱节点的节点(也就是入度为0的节点),
* 然后把它指向其他节点的边都去掉,重复这个过程(BFS),直到所有节点已被找到,或者没有符合条件的节点(如果图中有环存在)。。
* DFS的解法,也需要建立有向图,还是用二维数组来建立,和BFS不同的是,我们像现在需要一个一维数组visit来记录访问状态,
* 大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,
* 然后对新得到的课程调用DFS递归,直到出现新的课程已经访问过了,则返回false,没有冲突的话返回true,然后把标记为已访问的课程改为未访问
* http://www.jyuan92.com/blog/leetcode-course-schedule/
*/
public boolean canFinishWithBFS(int numCourses, int[][] prerequisites) {
if (null == prerequisites || numCourses == 0 || prerequisites.length == 0) {
return true;
}
int[] preCourses = new int[numCourses];
// store the in-degree #
for (int[] prerequisite : prerequisites) {
preCourses[prerequisite[0]]++;
}
Queue<Integer> queue = new LinkedList<Integer>();
for (int i = 0; i < preCourses.length; i++) {
if (preCourses[i] == 0) {
queue.add(i);
}
}
int numOfPreCourse = 0;
while (!queue.isEmpty()) {
int top = queue.poll();
numOfPreCourse++;
for (int[] prerequisite : prerequisites) {
if (prerequisite[1] == top) {//Find all the neighbor
preCourses[prerequisite[0]]--;
if (preCourses[prerequisite[0]] == 0) {
queue.add(prerequisite[0]);
}
}
}
}
return numOfPreCourse == numCourses;
}
/*
* 210 Course ScheduleII
* 2016-3-28 by jyuan
* http://www.jyuan92.com/blog/leetcode-course-schedule-ii/
*/
public int[] findOrder(int numCourses, int[][] prerequisites) {
int[] res = new int[numCourses];//区别1,多了一个装order的array
int[] preCourses = new int[numCourses];
// store the in-degree #
for (int[] prerequisite : prerequisites) {
preCourses[prerequisite[0]]++;
}
Queue<Integer> queue = new LinkedList<Integer>();
for (int i = 0; i < preCourses.length; i++) {
if (preCourses[i] == 0) {
queue.add(i);
}
}
int numOfPreCourse = 0;
int i = 0;//区别2,多了一个i来遍历res
while (!queue.isEmpty()) {
int top = queue.poll();
res[i++] = top;
numOfPreCourse++;
for (int[] prerequisite : prerequisites) {
if (prerequisite[1] == top) {
preCourses[prerequisite[0]]--;
if (preCourses[prerequisite[0]] == 0) {
queue.add(prerequisite[0]);
}
}
}
}//最后再多一个判断,就是返回是否是需要return新的
if (numOfPreCourse == numCourses) {
return res;
} else {
return new int[0];
}
}
/*
* 下面给出207的DFS方法:
* DFS的思路就简单一点,就是首先构造图的Map,每一个点包含一个list,表明这个点作为这个list
* 每一门课程的前备课程以待后用。那么主体思路就是每一个点为起点做一次dfs,知道底端,
* 如果没有问题就continue,如果有问题直接return false。
* 那么在主体部分,几个状态,如果为-1表示已经访问过肯定return false,如果为1表示这条路
* 已经是通路,已经验证完毕,所有连接这个点的直接return true。
*/
public boolean canFinishWithDFS(int numCourses, int[][] prerequisites) {
if (null == prerequisites || numCourses == 0 || prerequisites.length == 0) {
return true;
}
int[] isVisited = new int[numCourses];
Map<Integer, ArrayList<Integer>> map = new HashMap<Integer, ArrayList<Integer>>();
for (int[] prerequisite : prerequisites) {
if (!map.containsKey(prerequisite[1])) {
map.put(prerequisite[1], new ArrayList<Integer>());
}
map.get(prerequisite[1]).add(prerequisite[0]);
}
for (int i = 0; i < numCourses; i++) {
if (!dfs(isVisited, map, i)) {
return false;
}
}
return true;
}
private boolean dfs(int[] isVisited, Map<Integer, ArrayList<Integer>> map, int index) {
if (isVisited[index] == -1) {
return false;
}
if (isVisited[index] == 1) {
return true;
}
isVisited[index] = -1;//假如最后一个点进来,先赋值-1,然后没有map的值,所以直接为1,以后所有遇到这个点的都是通路
if (map.containsKey(index)) {
for (int value : map.get(index)) {
if (!dfs(isVisited, map, value)) {
return false;
}
}
}
isVisited[index] = 1;
return true;
}
/*
* 下面给出210的DFS方法:
*/
int i;//区别1全局变量i
public int[] findOrderWithDFS(int numCourses, int[][] prerequisites) {
i = numCourses - 1;
int[] res = new int[numCourses];
int[] isVisited = new int[numCourses];
Map<Integer, ArrayList<Integer>> map = new HashMap<Integer, ArrayList<Integer>>();
for (int[] prerequisite : prerequisites) {
if (!map.containsKey(prerequisite[1])) {
map.put(prerequisite[1], new ArrayList<Integer>());
}
map.get(prerequisite[1]).add(prerequisite[0]);
}
for (int i = 0; i < numCourses; i++) {
if (!dfs(map, isVisited, res, i)) {
return new int[0];
}
}
return res;
}
private boolean dfs(Map<Integer, ArrayList<Integer>> map, int[] isVisited, int[] res, int index) {
if (isVisited[index] == -1) {
return false;
}
if (isVisited[index] == 1) {
return true;
}
isVisited[index] = -1;
if (map.containsKey(index)) {
for (int value : map.get(index)) {
if (!dfs(map, isVisited, res, value)) {
return false;
}
}
}
res[i--] = index;
isVisited[index] = 1;
return true;
}
/*
* 261.Graph Valid Tree
* 2016-3-29 by Buttercola
* 和上面的BFS方法一样,不过这里是无向图,所以需要两个点都要存对方
* 图要形成树必须有两个方面,一个是没有cycle另一个是没有孤立的点
* Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes),
* write a function to check whether these edges make up a valid tree.
* Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.
* Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.
*/
private boolean valid(int n, int[][] edges) {
// build the graph using adjacent list
List<Set<Integer>> graph = new ArrayList<Set<Integer>>();
for(int i = 0; i < n; i++)
graph.add(new HashSet<Integer>());
for(int[] edge : edges) {
graph.get(edge[0]).add(edge[1]);
graph.get(edge[1]).add(edge[0]);
}
// no cycle
boolean[] visited = new boolean[n];
Queue<Integer> queue = new LinkedList<Integer>();
queue.add(0);
while(!queue.isEmpty()) {
int node = queue.poll();
if(visited[node])
return false;
visited[node] = true;
for(int neighbor : graph.get(node)) {
queue.offer(neighbor);
graph.get(neighbor).remove((Integer)node);
}
}
// fully connected
for(boolean result : visited){
if(!result)
return false;
}
return true;
}
/*
* 310. Minimum Height Trees
* 2016-3-29 by Mingyang
* 同样的方法构建无向图
* 这里运用的一个层层剥丝的方式,一层一层的来,去掉不要的
*/
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
if (n == 1) return Collections.singletonList(0);
List<Set<Integer>> adj = new ArrayList<Set<Integer>>(n);
for (int i = 0; i < n; ++i) adj.add(new HashSet<Integer>());
for (int[] edge : edges) {
adj.get(edge[0]).add(edge[1]);
adj.get(edge[1]).add(edge[0]);
}
List<Integer> leaves = new ArrayList<Integer>();
for (int i = 0; i < n; ++i)
if (adj.get(i).size() == 1) leaves.add(i);
while (n > 2) {
n -= leaves.size();
List<Integer> newLeaves = new ArrayList<Integer>();
for (int i : leaves) {
int j = adj.get(i).iterator().next();
adj.get(j).remove(i);
if (adj.get(j).size() == 1) newLeaves.add(j);
}
leaves = newLeaves;
}
return leaves;
}
/*
* 332. Reconstruct Itinerary
* 2016-3-14 by Mingyang
* 这道题给我们一堆飞机票,让我们建立一个行程单,如果有多种方法,取其中字母顺序小的那种方法。
* 这道题的本质是有向图的遍历问题,那么LeetCode关于有向图的题只有两道Course Schedule和Course Schedule II,
* 而那两道是关于有向图的顶点的遍历的,而本题是关于有向图的边的遍历。
* 每张机票都是有向图的一条边,我们需要找出一条经过所有边的路径,那么DFS不是我们的不二选择。
* 代码前半段都在准备工作。把所有的tickets全部装进一个map,string对应了一个priority queue
* 后半段dfs中,找出第一个顺序的结果。最终输出是从最后一个开始,一个一个往前退的情况下addFirst加起来的
*/
HashMap<String, PriorityQueue<String>> map = new HashMap<String, PriorityQueue<String>>();
LinkedList<String> result = new LinkedList<String>();
public List<String> findItinerary(String[][] tickets) {
for (String[] ticket : tickets) {
if (!map.containsKey(ticket[0])) {
PriorityQueue<String> q = new PriorityQueue<String>();
map.put(ticket[0], q);
}
map.get(ticket[0]).offer(ticket[1]);
}
dfs("JFK");
return result;
}
public void dfs(String s) {
PriorityQueue<String> q = map.get(s);
while (q != null && !q.isEmpty()) {
dfs(q.poll());
}
result.addFirst(s);
}
/*
* 323 Number of Connected Components in an Undirected Graph
* 2016-4-2 by Mingyang
* Given n nodes labeled from 0 to n - 1 and
* a list of undirected edges (each edge is a pair of nodes),
* write a function to find the number of connected components in an undirected graph.
* You can assume that no duplicate edges will appear in edges.
* Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
*/
public int countComponents(int n, int[][] edges) {
if (n <= 1) {
return n;
}
List<List<Integer>> adjList = new ArrayList<List<Integer>>();
for (int i = 0; i < n; i++) {
adjList.add(new ArrayList<Integer>());
}
for (int[] edge : edges) {
adjList.get(edge[0]).add(edge[1]);
adjList.get(edge[1]).add(edge[0]);
}
boolean[] visited = new boolean[n];
int count = 0;
for (int i = 0; i < n; i++) {
if (!visited[i]) {
count++;
dfs(visited, i, adjList);
}
}
return count;
}
public void dfs(boolean[] visited, int index, List<List<Integer>> adjList) {
visited[index] = true;
for (int i : adjList.get(index)) {
if (!visited[i]) {
dfs(visited, i, adjList);
}
}
}
}

Leetcode总结之Graph的更多相关文章

  1. [Leetcode Week3]Clone Graph

    Clone Graph题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/clone-graph/description/ Description Clon ...

  2. [LeetCode] 785. Is Graph Bipartite? 是二分图么?

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  3. LeetCode 785. Is Graph Bipartite?

    原题链接在这里:https://leetcode.com/problems/is-graph-bipartite/ 题目: Given an undirected graph, return true ...

  4. [LeetCode] 133. Clone Graph 克隆无向图

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  5. leetcode 133. Clone Graph ----- java

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  6. 【leetcode】Clone Graph(python)

    类似于二叉树的三种遍历,我们能够基于遍历的模板做非常多额外的事情,图的两种遍历,深度和广度模板相同也能够做非常多额外的事情,这里举例利用深度优先遍历的模板来进行复制,深度优先中,我们先訪问第一个结点, ...

  7. [LeetCode] 785. Is Graph Bipartite?_Medium tag: DFS, BFS

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  8. [leetcode]785. Is Graph Bipartite? [bai'pɑrtait] 判断二分图

    Given an undirected graph, return true if and only if it is bipartite. Example 1: Input: [[1,3], [0, ...

  9. Java for LeetCode 133 Clone Graph

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

随机推荐

  1. Applied Nonparametric Statistics-lec8

    Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/11 additive model value = t ...

  2. printk的使用技巧

    在 linux/kernel.h 中有相应的宏对应. #define KERN_EMERG    "<0>"    /* system is unusable */#d ...

  3. winServer08上安装SQL时提示“必须使用管理角色安装”或配置microsoft.net framework 3.5

    server 2008安装vs2008后报错,如图: 解决方法: 控制面板—>程序—>打开或关闭Windows功能—>进入服务器管理器选择功能—>添加功能 然后勾选.NET F ...

  4. HDU 5378 树上的概率DP Leader in Tree Land

    官方题解: 可以用求概率的思想来解决这个问题.令以i号节点为根的子树为第i棵子树,设这颗子树恰好有sz[i]个点.那么第i个点是第i棵子树最大值的概率为1/sz[i],不是最大值的概率为(sz[i]- ...

  5. 基于JQuery的WEB套打设计器jatoolsPrinter1.0

    开发web套打应用时,如快递单打印,一般要经过以下步骤:1. 扫描快递单据,保存成一个图片文件2. 将底图作成<img>3. 在<img>上放置打印项,试着打印到打印机,观察有 ...

  6. 前端PS切图技巧

    先选择“编辑”-“首选项” 打开,找到“参考线”    设置一下每格网格 100像素 5个细块 确定后 ctrl+‘ 出现网格.(通过网格对齐切图比用参考线切图更好). 如果使用PS cc的软件的话, ...

  7. Selenium WebDriver- 操作JavaScript的confirm弹窗

    #encoding=utf-8 import unittest import time from selenium import webdriver from selenium.webdriver i ...

  8. 面试中注意3个javascript的问题

    JavaScript 是所有现代浏览器的官方语言.因此,各种语言的开发者面试中都会遇到 JavaScript 问题. 本文不讲最新的 JavaScript 库,通用开发实践,或任何新的 ES6 函数. ...

  9. (英文排版测试)Lorem Ipsum

    Lorem Ipsum Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis tincidunt consequat pretiu ...

  10. iOS--自定义相册---对象数组按照时间戳排序

    将对象按照时间戳排序,这里典型的一个例子是登录账户的排序:本地客户端可能保存了多个账户信息,在登录窗口用户可以选择已经登陆过的账户直接登录,现在的需求是要时刻让最近登陆过的账户排在前面,对于每个账户, ...