hdu1506 直方图中最大的矩形 单调栈入门
hdu1506 直方图中最大的矩形 单调栈入门
直方图是由在公共基线对齐的矩形序列组成的多边形。矩形具有相同的宽度,但可能具有不同的高度。例如,左侧的数字显示了由高度为2,1,4,5,1,3,3的矩形组成的直方图,单位为1,其中矩形的宽度为1:
通常,直方图用于表示离散分布,例如文本中字符的频率。请注意,矩形的顺序,即它们的高度很重要。计算在公共基线上对齐的直方图中最大矩形的面积。右图显示了所描述的直方图的最大对齐矩形。
输入包含几个测试用例。每个测试用例都描述一个直方图,并以整数n开头,表示它组成的矩形的数量。您可以假设1 <= n <= 100000。然后遵循n个整数h1,...,hn,其中0 <= hi <= 1000000000。这些数字表示直方图的矩形的高度,从左到右订购。每个矩形的宽度是1.零跟在最后一个测试用例的输入之后。对于每个测试用例,在一行中输出指定直方图中最大矩形的面积。请记住,这个矩形必须在公共基线上对齐。
单调栈,就是具有单调性质的栈,用途与单调队列有相似之处。我们先来分析一下这道题。一个最大矩阵的高度,就是矩阵覆盖到的,高度最小的条形的高度。所以我们只需要枚举每个条形作为高度最小的条形,所能形成的最大矩阵,然后取最大值即可。
那么现在,问题就转换成了对于每个条形,以它的高度作为矩阵的高度,矩阵最多能向左和向右延伸到的高度,相当于求这个矩阵,左边有连续多少个矩阵比它高,右边有连续多少个矩阵比它高。所以,长度就是:(右边第一个比它小的条形的位置-左边第一个比它小的条形的位置-1)。如何求第一个比当前数小的左侧或右侧数呢?这就要用到单调栈。
设第一个比当前数(序号为i)小的左侧数为\(left[i]\)。算法的流程是这样的:设现在程序循环到第i个数,如果当前,栈顶的数大于等于第i个数,说明什么?说明序号i以后的数j,它们的\(left[j]\)一定不会是栈顶那个数,因为选了j一定能选i。既然这样,直接把j从栈中弹出,然后继续判断……直至第i个数遇到比它小的栈顶的数。这个数就是\(left[i]\),因为比i小的数只会被更小更优的数替换。然后,将i入栈。这样就把那些无用的,值大于第i个数,却在第i个数左边的数统统用第i个数替换了。这就去除了冗余状态。
从这道题,我们能发现一些单调栈和单调队列的共同点和不同点。共同点:1.它们都保持了单调性。2.它们都通过一个元素必定比其它优,就可以直接删去其他元素的方法,去除了冗余状态。3.由于元素都是一进一出,时间复杂度为O(n)。不同点:单调队列,最优值和插入操作在队首,在弹出操作在队尾。单调栈,最优值,插入操作和弹出操作都在栈顶。
#include <cstdio>
using namespace std;
const int maxn=1e5+5;
typedef long long LL;
struct stack{
int t, a[maxn];
void reset(){ t=0; }
void pop(){ if (--t==-1) ++t; }
void add(int x){ a[++t]=x; }
int top(){ return a[t]; }
}s;
int n;
int a[maxn], lessleft[maxn], lessright[maxn];
int max(const int &a, const int &b){ return a<b?b:a; }
LL max(const LL &a, const LL &b){ return a<b?b:a; }
int main(){
while (scanf("%d", &n), n){
a[0]=a[n+1]=-1;
s.reset(); s.add(0);
for (int i=1; i<=n; ++i){
scanf("%d", &a[i]);
while (a[i]<=a[s.top()]) s.pop();
lessleft[i]=s.top(); s.add(i);
}
s.reset(); s.add(n+1);
for (int i=n; i>=1; --i){
while (a[i]<=a[s.top()]) s.pop();
lessright[i]=s.top(); s.add(i);
}
LL maximum=0;
for (int i=1; i<=n; ++i)
maximum=max(maximum,
LL(lessright[i]-lessleft[i]-1)*a[i]);
printf("%lld\n", maximum);
}
return 0;
}
hdu1506 直方图中最大的矩形 单调栈入门的更多相关文章
- [LeetCode] Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- POJ 3250 Bad Hair Day【单调栈入门】
Bad Hair Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 24112 Accepted: 8208 Des ...
- AcWing:131. 直方图中最大的矩形(贪心 + 单调栈)
直方图是由在公共基线处对齐的一系列矩形组成的多边形. 矩形具有相等的宽度,但可以具有不同的高度. 例如,图例左侧显示了由高度为2,1,4,5,1,3,3的矩形组成的直方图,矩形的宽度都为1: 通常,直 ...
- [leetcode]84. Largest Rectangle in Histogram直方图中的最大矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- 51nod 1102 面积最大的矩形 (单调栈)
链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1102 思路: 首先介绍下单调栈的功能:利用单调栈,可以找到从左/ ...
- [51nod1102]面积最大的矩形(单调栈||预处理)
题意:求序列上某区间最小值乘区间长度的最大值. 解题关键:很早就在<挑战程序设计竞赛>中见过了,单调栈模板题,注意弹栈时如何处理后面的元素. 法一:单调栈 #include<bits ...
- Leetcode84. 柱状图中最大的矩形(单调栈)
84. 柱状图中最大的矩形 前置 单调栈 做法 连续区间组成的矩形,是看最短的那一块,求出每一块左边第一个小于其高度的位置,右边也同理,此块作为最短限制.需要两次单调栈 单调栈维护递增区间,每次不满足 ...
- BZOJ1113 海报PLA1(单调栈入门题)
一,自己思考下 1,先自己思考下 N个矩形,排成一排,现在希望用尽量少的海报去cover住它们. 2,不懂. 着实不懂. 3,分析下,最优性问题对吧,然后就每什么想法了.. 虽然肯定和单调栈和单调队列 ...
随机推荐
- 常用js方法函数
常用方法函数 1.深复制 // 1.深复制 function deepCopy(source) { var result = {}; for (var key in source) { result[ ...
- Linux- 恢复.swp文件
当我们对Linux文件系统下的文件编辑时,很多新手老手都有可能出现一些失误,在对一个文件编辑或者改动,甚至是不小心按到键盘并没有发现改动到某处时,没有强制退出(:q!)就直接退出,导致文件变成了.sw ...
- BZOJ 1198 [HNOI2006]军机调度:dfs
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1198 题意: 有n个雇佣军,m个任务. 第i个雇佣军能够参加cnt个任务,分别为temp[ ...
- Promise 入门与使用
Tags: ECMAScript6 参考资料 promises-book Promise对象 we-have-a-problem-with-promises Promise最初被提出是在 E语言中, ...
- 局域网扫描IP
今天有朋友去面试,被问到一个“如何扫描局域网IP”的问题(即找出局域网中当前已使用的IP),朋友回答的不好,回来问我,我首先想到的就是使用ping命令将局域网可分配的IP地址逐个遍历一遍,能ping通 ...
- 机器学习: R-CNN, Fast R-CNN and Faster R-CNN
做语义分割的大概都知道这几篇文章了,将一个传统的计算机视觉模型,用CNN一点一点的替换,直到最后构建了一个完整的基于CNN的端到端的模型.这几篇文章有一定的连贯性.从中可以看到一种研究的趋势走向. 上 ...
- BZOJ1018:[SHOI2008]堵塞的交通
浅谈树状数组与线段树:https://www.cnblogs.com/AKMer/p/9946944.html 题目传送门:https://www.lydsy.com/JudgeOnline/prob ...
- bzoj 3714 [PA2014]Kuglarz——思路+最小生成树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3714 如果用s[ i ]表示前 i 个的奇偶性,那么c(i_j)表示s[ i-1 ]^s[ ...
- 洛谷 P4106 / bzoj 3614 [ HEOI 2014 ] 逻辑翻译 —— 思路+递归
题目:https://www.luogu.org/problemnew/show/P4106 https://www.lydsy.com/JudgeOnline/problem.php?id=3614 ...
- Global 全局样式基本设置
1. 默认字体设置,边距设置 html { font-family: sans-serif; /* 默认字体 */ font-size: 100%; /* 在用户调整窗口大小时,字体大小做相应调整. ...