考虑任意一种划给大头的方案,两端的都给了大头(bel=1)的边产生难受值,剩下n-k个果子分给m-1个头,当m-1=1时,两端都给了这个小头也产生难受值;而m-1>1的情况要好看的多,贪心的,因为未划分的果子构成一个森林,重新计算这些果子在所在树中的深度,把果子按深度排序,前m-1个个分别划分,剩下的节点任意分配,只需要保证与父亲不同即可,显然按这种分配方法能做到“零难受”。

换而言之,当m=2时只有两端分配不同才不会有难受值(废话!);否则,只有两端都分配给了1(大头)才会有难受值。然后就能写dp了,设f[x,0/1]表示x子树中,x是否划分给了1的最小难受值之和。

\[f[x,0]=\begin{cases}
+\infty &x\text{是最大值点}\\
\sum_{x\to y} \min(f[y,0]+len_{x\to y},f[y,1]) &m=2\\
\sum_{x\to y} \min(f[y,0],f[y,1]) &m>1
\end{cases}\\
f[x,1]=\sum_{x\to y} \min(f[y,0],f[y,1]+len_{x\to y})
\]

似乎很可信的样子……可行个喘喘,怎么着也得加一位表示子树内已经分配给1的节点总数吧……反正不再列式子了(光速逃

#include <bits/stdc++.h>
using namespace std;
const int N=310; int n,m,k;
int head[N],to[N<<1],len[N<<1],lst[N<<1];
int siz[N],f[N][N][2],tmp[N][2]; void ins(int x,int y,int w) {
static int cnt=0;
to[++cnt]=y,len[cnt]=w,lst[cnt]=head[x],head[x]=cnt;
to[++cnt]=x,len[cnt]=w,lst[cnt]=head[y],head[y]=cnt;
}
void dfs(int x,int pa) {
siz[x]=1;
memset(f[x],0x3f,sizeof f[x]);
f[x][0][0]=f[x][1][1]=0;
for(int i=head[x]; i; i=lst[i]) if(to[i]!=pa) {
int y=to[i];
dfs(y,x); siz[x]+=siz[y];
memcpy(tmp,f[x],sizeof f[x]);
memset(f[x],0x3f,sizeof f[x]);
for(int s=0; s<=k&&s<=siz[x]; ++s)
for(int t=0; t<=s&&t<=siz[y]; ++t) {
f[x][s][0]=min(f[x][s][0],min(f[y][t][0]+(m==2)*len[i],f[y][t][1])+tmp[s-t][0]);
f[x][s][1]=min(f[x][s][1],min(f[y][t][0],f[y][t][1]+len[i])+tmp[s-t][1]);
}
}
} int main() {
scanf("%d%d%d",&n,&m,&k);
for(int x,y,w,i=n; --i; ) {
scanf("%d%d%d",&x,&y,&w);
ins(x,y,w);
}
if(m-1+k>n) {
puts("-1");
return 0;
}
dfs(1,0);
printf("%d\n",f[1][k][1]);
return 0;
}

[NOI2002] 贪吃的九头蛇的更多相关文章

  1. [codevs1746][NOI2002]贪吃的九头龙

    [codevs1746][NOI2002]贪吃的九头龙 试题描述 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是说它出生的时候有九个头,而在成长的过程中,它有时 ...

  2. [NOI2002]贪吃的九头龙(树形dp)

    [NOI2002]贪吃的九头龙 题目背景 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是 说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的 ...

  3. vojis1523 NOI2002 贪吃的九头龙

    描述 传说中的九头龙是一种特别贪吃的动物.虽然名字叫“九头龙”,但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头因衰老而自己脱落. 有一天, ...

  4. [NOI2002] 贪吃的九头龙

    题目类型:树形DP 传送门:>Here< 题意:有一只九头龙要吃了一颗树,给出一棵\(N\)个节点的带边权的树.九头龙有\(M\)个头,其中一个是大头,大头要吃恰好\(K\)个节点,其他头 ...

  5. Vijos1523 NOI2002 贪吃的九头龙 树形dp

    思路不算很难,但细节处理很麻烦 前面建图.多叉转二叉,以及确定dp处理序列的过程都是套路,dp的状态转移过程以注释的形式阐述 #include <cstdio> #include < ...

  6. 洛谷 P4362 [NOI2002]贪吃的九头龙

    https://www.luogu.org/problemnew/show/P4362 首先有个很显然的dp:ans[i][j][k]表示i节点用j号头,i节点为根的子树中共有k个点用大头时i节点为根 ...

  7. Vijos1523贪吃的九头龙【树形DP】

    贪吃的九头龙 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头 ...

  8. [转帖]利用hydra(九头蛇)暴力破解内网windows登录密码

    利用hydra(九头蛇)暴力破解内网windows登录密码 https://blog.csdn.net/weixin_37361758/article/details/77939070 尝试了下 能够 ...

  9. hydra(九头蛇)多协议暴力破解工具

    一.简介 hydra(九头蛇)全能暴力破解工具,是一款全能的暴力破解工具,使用方法简单 二.使用 使用hydra -h 查看基本用法 三.命令 hydra [[[-l LOGIN|-L FILE] [ ...

随机推荐

  1. hashMap的线程不安全

    hashMap是非线程安全的,表现在两种情况下: 1 扩容: t1线程对map进行扩容,此时t2线程来读取数据,原本要读取位置为2的元素,扩容后此元素位置未必是2,则出现读取错误数据. 2 hash碰 ...

  2. CEF与MLS快速交换对比

    MLS快速交换 到达某特定目的地址的IP包通常会引起数据包流,即假设交换过到特定目标的包之后,另一个很可能不久也会到达.通过构建最近交换目标的高速缓存,可以减少包在全路由表中查找同一目标的次数,这种“ ...

  3. HDU 1005 Number Sequence:矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 题意: 数列{f(n)}: f(1) = 1, f(2) = 1, f(n) = ( A*f(n ...

  4. laravel登录后台500错误!

    登录页面正常显示,填写完用户名密码 点登录后 页面一片空白,没有任何输出.debug可以看到一个500错误,preview和response都是空的.追踪了一下 发现在public/index.php ...

  5. python处理时间汇总

    1.将字符串的时间转换为时间戳 方法: a = "2013-10-10 23:40:00" 将其转换为时间数组 import time timeArray = time.strpt ...

  6. requirejs的打包工具r.js

    不建议用命令行,还是用配置文件比较方便--build.js. 我的build.js文件内容大概如下: ( { appDir : './', baseUrl : './scripts', dir : ' ...

  7. 事务之六:spring 嵌套事务

    一.基本概念 事务的隔离级别,事务传播行为见<事务之二:spring事务(事务管理方式,事务5隔离级别,7个事务传播行为,spring事务回滚条件) > 二. 嵌套事务示例 2.1.Pro ...

  8. Python pip 报错

    1,pip ssl certification ssl: certificate_verify_failed... 2,Could not find a version that satisfies ...

  9. David Malan teaching CS75 lecture 9, Scalability

    https://youtu.be/-W9F__D3oY4 Storage PATA, SATA, SAS (15,000 rpm), SSD, RAID0 : striping, double thr ...

  10. 慕课网java就业班级

    家里电脑教程路径: F:\教程\java-慕课 开发工具路径: D:\java 公司电脑:开发工具路径 J:\java\开发工具 教程路径: G:\学习中\廖雪峰的java教程\1-Java快速入门\ ...