BZOJ 2813: 奇妙的Fibonacci
2813: 奇妙的Fibonacci
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 497 Solved: 134
[Submit][Status][Discuss]
Description
Input
第一行一个整数Q,表示Q个询问。
第二行四个整数:Q1, A, B, C
第i个询问Qi = (Qi-1 * A + B) mod C + 1(当i >= 2)
Output
Ai代表第i个询问有多少个Fj能够整除FQi。
Bi代表第i个询问所有j的平方之和。
输出包括两行:
第一行是所有的Ai之和。
第二行是所有的Bi之和。
由于答案过大,只需要输出除以1000000007得到的余数即可。
Sample Input
2 2 1 8
Sample Output
55
HINT
对于100%的数据保证:Q <= 3*10^6,C <= 10^7,A <= 10^7,B <= 10^7,1 <= Q1<= C
Source
分析:
打表可以发现答案就是约数个数以及约数平方和...
如果要严谨的证明就是这个定理:$gcd(f[i],f[j])=f[gcd(i,j)]$
证明如下:
定理1:$gcd(f[n],f[n+1])=1$
$gcd(f[n],f[n+1])$
$=gcd(f[n+1]-f[n],f[n])$
$=gcd(f[n],f[n-1])$
$……$
$=gcd(f[2],f[1])$
$=1$
定理2:$f[m+n]=f[m-1]f[n]+f[m]f[n+1]$
$f[m+n]$
$=f[n+m-1]+f[n+m-2]$
$=2*f[n+m-2]+f[n+m-3]$
$=a[x]*f[n+m-x]+b[x]*f[n+m-x-1]$
$=(a[x]+b[x])*f[n+m-x-1]+a[x]*f[n+m-x-2]$
如果$x=1$,则$a[x]=f[2],b[x]=f[1]$
如果$x=2$,则$a[x]=f[3],b[x]=f[2]$
如果$x=n$,则$a[x]=f[n+1],b[x]=f[n]$
所以$f[m+n]=f[m]*f[n+1]+f[n]*f[m-1]$
定理3:$gcd(f[m+n],f[n])=gcd(f[m],f[n])$
$gcd(f[m+n],f[n])$
$=gcd(f[m]*f[n+1]+f[n]*f[m-1],f[n])$
$=gcd(f[m]*f[n+1],f[n])$
$=gcd(f[n+1],f[n])*gcd(f[m],f[n])$
$=gcd(f[m],f[n])$
然后根据辗转相减法:
设$m=p _{1}*n+r _{1},n=p _{2}*r _{1}+r _{2},r_{1}=p _{3}*r _{2}+r _{3}......$
$gcd(m,n)=gcd(n,r _{1})=......=r _{x}$
$gcd(f[m],f[n])=gcd(f[n],f[r _{1}])=......f[r _{x}]=f[gcd(m,n)]$
然后约数和还有平方和线性筛的时候维护一下就好了...
因为f[2]=1,所以如果q是奇数约数和要+1,平方和要+4...
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=10000000+5,mod=1e9+7; int a,b,c,q,q1,tot,ans1,ans2,vis[maxn],pri[maxn],cnt[maxn],Min[maxn],sum[maxn],els[maxn]; inline void prework(void){
cnt[1]=sum[1]=1;
for(int i=2;i<=10000000;i++){
if(!vis[i])
pri[++tot]=i,Min[i]=els[i]=1,cnt[i]=2,sum[i]=1LL*i*i%mod+1;
for(int j=1;j<=tot&&i*pri[j]<=10000000;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0){
Min[i*pri[j]]=Min[i]+1;els[i*pri[j]]=els[i];
cnt[i*pri[j]]=(cnt[i]/(Min[i]+1))*(Min[i*pri[j]]+1);
sum[i*pri[j]]=(1LL*sum[i]*pri[j]%mod*pri[j]%mod+sum[els[i]])%mod;
break;
}
cnt[i*pri[j]]=cnt[i]+1,Min[i*pri[j]]=1;
els[i*pri[j]]=i;cnt[i*pri[j]]=cnt[i]<<1;
sum[i*pri[j]]=(sum[i]+1LL*sum[i]*pri[j]%mod*pri[j]%mod)%mod;
}
}
} signed main(void){
ans1=ans2=0;prework();
scanf("%d%d%d%d%d",&q,&q1,&a,&b,&c);a%=c,b%=c;
for(int i=1;i<=q;i++){
if(i>1)
q1=(1LL*q1*a+b)%c+1;
(ans1+=cnt[q1]+(q1&1))%mod,(ans2+=sum[q1]+(q1&1)*4)%=mod;
}
printf("%d\n%d\n",ans1,ans2);
return 0;
}
By NeighThorn
BZOJ 2813: 奇妙的Fibonacci的更多相关文章
- 关于奇妙的 Fibonacci 的一些说明
奇妙的 Fibonacci,多次模拟赛中出现 同时也是 BZOJ 2813 一 Fibonacci 的 GCD 如果 \(F\) 是 Fibonacci 数列,那么众所周知的有 \(\gcd(F_i, ...
- bzoj千题计划204:bzoj2813: 奇妙的Fibonacci
http://www.lydsy.com/JudgeOnline/problem.php?id=2813 若j能整除i,则f[j]能整除f[i] 题目就变成了求约数个数和.约数的平方和 http:// ...
- 【BZOJ】1987: Zju2672 Fibonacci Subsequence
题意 给出一个序列\(A\),求一个最长的满足fib性质的子序列,输出其长度及其元素(如果多种方案,输出位置最靠前的).(\(n \le 3000\)) 题解 容易想到dp,即\(d(i, j)\)表 ...
- 【BZOJ2813】奇妙的Fibonacci
Description Fibonacci数列是这样一个数列: F1 = 1, F2 = 1, F3 = 2 . . . Fi = Fi-1 + Fi-2 (当 i >= 3) pty忽 ...
- 【bzoj2813】 奇妙的Fibonacci数列 线性筛
Description Fibonacci数列是这样一个数列: F1 = 1, F2 = 1, F3 = 2 . . . Fi = Fi-1 + Fi-2 (当 i >= 3) pty忽然对这个 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- Noip模拟73 2021.10.10
老妈送来了防寒补给就很棒,再也不用晚上盖两层毛巾被了,再也不用担心晚上自动把毛巾被$split$了 还有一些好吃的耶叶 T1 小L的疑惑 考场上疑惑的切掉了 直接把$a$排序然后处理前缀和的过程中判断 ...
- bzoj 3978: [WF2012]Fibonacci Words
Description 斐波那契01字符串的定义如下 F(n) = { 0 if n = 0 1 if n = 1 F(n-1)+F(n-2) if n >= 2 } 这里+的定义是字符串的 ...
- BZOJ [Poi2012]Fibonacci Representation
找最近的数 记忆化 (我也不知道为什么对的) #include<cstdio> #include<algorithm> #include<map> using na ...
随机推荐
- XML字符串解析
不多说,直接上代码: import java.io.StringReader; import org.dom4j.Document; import org.dom4j.DocumentExceptio ...
- Head First Python (一)
建立一个数组: cast = ["Cleese","Palin","Jones","Idle"] 列出数组有多少数据项: ...
- 使用 CAST
使用 CAST: CAST ( expression AS data_type ) 使用 CONVERT: CONVERT (data_type[(length)], expression [, st ...
- Codeforces Round #271 (Div. 2) D Flowers【计数dp】
D. Flowers time limit per test 1.5 seconds memory limit per test 256 megabytes input standard input ...
- 2017 United Kingdom and Ireland Programming(Gym - 101606)
题目很水.睡过了迟到了一个小时,到达战场一看,俩队友AC五个了.. 就只贴我补的几个吧. B - Breaking Biscuits Gym - 101606B 旋转卡壳模板题.然后敲错了. 代码是另 ...
- Patrick and Shopping
Patrick and Shopping 今天 Patrick 等待着他的朋友 Spongebob 来他家玩.为了迎接 Spongebob,Patrick 需要去他家附近的两家商店 买一些吃的.他家 ...
- wim
wim 编辑 WIM是英文Microsoft Windows Imaging Format(WIM)的简称,它是Windows基于文件的映像格式.WIM 映像格式并非现在相当常见的基于扇区的映像格式, ...
- msconfig.exe
msconfig.exe 编辑 本词条缺少概述.名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 中文名 微软系统配置实用程序 外文名 msconfig.exe 出品者 Micros ...
- tomcat内存泄漏存入dump文件
很多tomcat进程退出(或者进程假死),都是由于频繁的抛出OutOfMemeoryError导致的. 为了让tomcat退出前或者发生OutOfMemeoryError时自动dump堆栈信息,方便事 ...
- Jquery 实现层的拖动,支持回调函数
最近在写一个CMS内容管理系统,前台基本是用ajax异步请求服务器,通过ashx处理,返回json格式处理.由于需要更加人性化的界面,所以采用到了拖动层的操作. 以下是拖动层的主要核心方法,本来想写成 ...