概率图模型(PGM)学习笔记(二)贝叶斯网络-语义学与因子分解
概率分布(Distributions)
如图1所看到的,这是最简单的联合分布案例,姑且称之为学生模型。
图1
当中包括3个变量。各自是:I(学生智力,有0和1两个状态)、D(试卷难度,有0和1两个状态)、G(成绩等级,有1、2、3三个状态)。
表中就是概率的联合分布了,表中随便去掉全部包括某个值的行。就能对分布表进行缩减。
比如能够去掉全部G不为1的行。这样就仅仅剩下了1、4、7、10行,这样他们的概率之和就不为1了,所以能够又一次标准化(Renormalization)。如图2所看到的。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveWNoZW5nX3NqdHU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
图2
反之也能够把全部含有某个值得行相加。就是边缘化(Marginalization),如图3所看到的。
图3
条件概率分布(Conditional ProbabilityDistribution, CPD)
已知学生的智力和试卷难度。学生得分的分布就是条件概率。
如图4所看到的。
图4
因子(Factors)
因子是随机变量的函数。
因子是处理概率分布的的基本手段。
因子是高维空间中用以定义概率分布的基本单元。
因子能够相乘(图5)、边缘化(图6)以及缩减(图7)。
图5
图6
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveWNoZW5nX3NqdHU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
图7
前面提到的学生模型,其条件概率分布能够画在一张图里面。如图8.
每一个节点代表一个因子,当中有些CPD已经蜕化成非条件概率了。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveWNoZW5nX3NqdHU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
图8
贝叶斯网络的链式法则(Chain Rule)
如图9所看到的。概率分布由因子的积来定义。
图9
比如
因此,通过链式法则。贝叶斯网络可以表示联合概率分布:
贝叶斯网络的重要性质是概率和为1
一个简单的概率图是血型模型
当中G指基因型,B指血型。
能够看到血型仅仅由自己的基因型决定,而基因型则由父母两人的基因型决定。如图10.
图10
欢迎參与讨论并关注本博客和微博以及知乎个人主页,兴许内容继续更新哦~
转载请您尊重作者的劳动,完整保留上述文字以及本文链接。谢谢您的支持!
概率图模型(PGM)学习笔记(二)贝叶斯网络-语义学与因子分解的更多相关文章
- Stanford概率图模型: 第一讲 有向图-贝叶斯网络
原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系 ...
- [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian)
[ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先 ...
- 贝叶斯网络与LDA
一.一些概念 互信息: 两个随机变量x和Y的互信息,定义X, Y的联合分布和独立分布乘积的相对熵. 贝叶斯公式: 贝叶斯带来的思考: 给定某些样本D,在这些样本中计算某结论出现的概率,即 给定样本D ...
- 机器学习之朴素贝叶斯&贝叶斯网络
贝叶斯决决策论 在所有相关概率都理想的情况下,贝叶斯决策论考虑基于这些概率和误判损失来选择最优标记,基本思想如下: (1)已知先验概率和类条件概率密度(似然) (2)利用贝叶斯转化为后验概 ...
- 概率图模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-多项式贝叶斯
之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上 ...
- 概率图形模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-贝叶斯多项式
之前忘记强调重要的差异:链式法则的条件概率和贝叶斯网络的链式法则之间的差异 条件概率链式法则 P\left({D,I,G,S,L} \right) = P\left( D \right)P\left( ...
- 机器学习&数据挖掘笔记_18(PGM练习二:贝叶斯网络在遗传图谱在的应用)
前言: 这是coursera课程:Probabilistic Graphical Models上的第二个实验,主要是用贝叶斯网络对基因遗传问题进行一些计算.具体实验内容可参考实验指导教材:bayes ...
- 概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)
概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over ...
- PGM学习之二 PGM模型的分类与简介
废话:和上一次的文章确实隔了太久,希望趁暑期打酱油的时间,将之前学习的东西深入理解一下,同时尝试用Python写相关的机器学习代码. 一 PGM模型的分类 通过上一篇文章的介绍,相信大家对PGM的定义 ...
随机推荐
- HTML title属性换行显示的方法
原文发布时间为:2009-04-22 -- 来源于本人的百度文章 [由搬家工具导入] 解决的方法有两种: 1.将title属性分成几行来写,例如:<a href=#" title=&q ...
- 《Linux命令行与shell脚本编程大全 第3版》Linux命令行---14
以下为阅读<Linux命令行与shell脚本编程大全 第3版>的读书笔记,为了方便记录,特地与书的内容保持同步,特意做成一节一次随笔,特记录如下:
- python commands 模块
commands 模块 通过python调用系统命令 只适用于linux commands是提供linux系统环境下支持使用shell命令的一个模块 commands.getoutput(cmd) 只 ...
- hdu 4985(模拟)
Little Pony and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- AC日记——[国家集训队2010]小Z的袜子 cogs 1775
[国家集训队2010]小Z的袜子 思路: 传说中的莫队算法(优雅的暴力): 莫队算法是一个离线的区间询问算法: 如果我们知道[l,r], 那么,我们就能O(1)的时间求出(l-1,r),(l+1,r) ...
- Codeforces Gym101522 C.Cheering-字符串 (La Salle-Pui Ching Programming Challenge 培正喇沙編程挑戰賽 2017)
C.Cheering To boost contestants' performances in the 20th La Salle - Pui Ching Programming Challenge ...
- Codeforces 761E Dasha and Puzzle(构造)
题目链接 Dasha and Puzzle 对于无解的情况:若存在一个点入度大于4,那么直接判断无解. 从根结点出发(假设根结点的深度为0), 深度为0的节点到深度为1的节点的这些边长度为2^30, ...
- Longest Valid Parentheses - LeetCode
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- Java中的文件上传(原始Servlet实现)
从原始的Servlet来实现文件的上传,代码如下: 参考:https://my.oschina.net/Barudisshu/blog/150026 采用的是Multipart/form-data的方 ...
- weblogic的集群与配置图文
一.Weblogic的集群 还记得我们在第五天教程中讲到的关于Tomcat的集群吗? 两个tomcat做node即tomcat1, tomcat2,使用Apache HttpServer做请求派发 ...