题目大意

用最小矩形覆盖平面上所有的点

分析

有一结论:最小矩形中有一条边在凸包的边上,不然可以旋转一个角度让面积变小

简略证明

我们逆时针枚举一条边

用旋转卡壳维护此时最左,最右,最上的点

注意

注意凸包后点数不再是n

吐槽

凸包后点数是n,bzoj上就过了???

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef double db;
const db eps=1e-9;
const int M=50007; int n; struct pt{
db x,y;
pt(db _x=0.0,db _y=0.0){x=_x; y=_y;}
}p[M],s[M]; int tot; bool eq(db x,db y){return fabs(y-x)<=eps;}
bool le(db x,db y){return eq(x,y)||x<y;} pt operator -(pt x,pt y){return pt(x.x-y.x,x.y-y.y);}
pt operator +(pt x,pt y){return pt(x.x+y.x,x.y+y.y);}
bool operator <(pt x,pt y){return (x.y!=y.y)?(x.y<y.y):(x.x<y.x);}
bool operator ==(pt x,pt y){return eq(x.x,y.x)&&eq(x.y,y.y);};
pt operator *(pt x,db d){return pt(x.x*d,x.y*d);}
pt operator /(pt x,db d){return pt(x.x/d,x.y/d);} db dot(pt x,pt y){
return x.x*y.x+x.y*y.y;
} db cross(pt x,pt y){
return x.x*y.y-x.y*y.x;
} db length(pt x){
return sqrt(dot(x,x));
} db area(pt x,pt y,pt z){
return cross(y-x,z-x);
} db shadow(pt x,pt y,pt to){
return dot(y-x,to-x)/length(to-x);
} pt lf_90(pt x){
return pt(-x.y,x.x);
} bool cmp(pt x,pt y){
db tp=area(p[1],x,y);
if(eq(tp,0)) return length(x-p[1])<length(y-p[1]);
return tp>0;
} void convex(){
int i,ii=1;
for(i=2;i<=n;i++) if(p[i]<p[ii]) ii=i;
swap(p[1],p[ii]);
sort(p+2,p+n+1,cmp); s[tot=1]=p[1];
for(i=2;i<=n;i++){
while(tot>1&&le(area(s[tot-1],s[tot],p[i]),0)) tot--;
s[++tot]=p[i];
}
} int main(){
int i,p1,p2,p3;
db tp1,tp2,tp3,tp4,ans;
pt a[5],tp; scanf("%d",&n); for(i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); convex(); s[0]=s[tot];//要算每一条边,加上tot-0的 ans=1e32;
p1=1,p2=1,p3=1; for(i=0;i<tot;i++){
if(s[i]==s[i+1]) continue; while(le(area(s[i],s[i+1],s[p3]),area(s[i],s[i+1],s[p3%tot+1]))) p3=p3%tot+1;
if(i==0) p1=p3;//第一次找卡壳特例
while(le(shadow(s[i],s[p1%tot+1],s[i+1]),shadow(s[i],s[p1],s[i+1]))) p1=p1%tot+1;
while(le(shadow(s[i+1],s[p2%tot+1],s[i]),shadow(s[i+1],s[p2],s[i]))) p2=p2%tot+1; tp1=length(s[i+1]-s[i]);
tp2=area(s[i],s[i+1],s[p3])/tp1;
tp3=fabs(shadow(s[i],s[p1],s[i+1]));
tp4=fabs(shadow(s[i+1],s[p2],s[i])); if(le((tp1+tp3+tp4)*tp2,ans)){
ans=(tp1+tp3+tp4)*tp2;
tp=s[i+1]-s[i];
a[1]=s[i]-tp*(tp3/tp1);
a[2]=s[i+1]+tp*(tp4/tp1);
tp=lf_90(tp);
a[3]=a[2]+tp*(tp2/tp1);
a[4]=a[1]+tp*(tp2/tp1);
}
} printf("%.5lf\n",ans+eps); int ii=1;
for(i=2;i<=4;i++) if(a[i]<a[ii]) ii=i;
printf("%.5lf %.5lf\n",a[ii].x+eps,a[ii].y+eps);
for(i=ii%4+1;i!=ii;i=i%4+1) printf("%.5lf %.5lf\n",a[i].x+eps,a[i].y+eps); return 0;
}

bzoj 1185 [HNOI2007]最小矩形覆盖 凸包+旋转卡壳的更多相关文章

  1. [BZOJ1185][HNOI2007]最小矩形覆盖-[凸包+旋转卡壳]

    Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include&l ...

  2. 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)

    题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...

  3. BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solve ...

  4. BZOJ:1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...

  5. BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)

    BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...

  6. BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 题意: 给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积. 题解: 先找出凸 ...

  7. bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...

  8. BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子

    来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...

  9. ●BZOJ 1185 [HNOI2007]最小矩形覆盖

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解: 计算几何,凸包,旋转卡壳 结论:矩形的某一条边在凸包的一条边所在的直线上. ( ...

随机推荐

  1. 【动态规划】bzoj1705: [Usaco2007 Nov]Telephone Wire 架设电话线

    可能是一类dp的通用优化 Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设 ...

  2. java解析多层嵌套json字符串

    java分别解析下面两个json字符串 package jansonDemo; import com.alibaba.fastjson.JSON; import com.alibaba.fastjso ...

  3. phpExcel使用方法一

    include 'PHPExcel.php'; include 'PHPExcel/Writer/Excel2007.php'; //或者include 'PHPExcel/Writer/Excel5 ...

  4. 这五本Python急速入门必读的书,送给正在学习Python的你!

    书籍是人类进步的阶梯,这句话从古至今都是适用的.为什么会这么说呢?书籍,它记录了人们实践的经验,这些经验有助于我们快速的学习,对于编程学习来说也不例外,今天就给大家带来了以下的书籍干货,希望能够帮助到 ...

  5. 通过session模拟登陆

    import requests # 这个练习对比的是上一个登陆练习,这个是不用自己传入cookie参数,而是利用session方法登陆 # 实例化一个session session = request ...

  6. LightOj:1265-Island of Survival

    Island of Survival Time Limit: 2 second(s) Memory Limit: 32 MB Program Description You are in a real ...

  7. 数据结构和算法(What Why How)

    数据结构和算法是什么? 从广义上讲,数据结构就是指一组数据的存储结构.算法就是操作数据的一组方法. 从狭义上讲,是指某些著名的数据结构和算法,比如队列.堆.栈.二分查找.动态规划等. 数据结构和算法有 ...

  8. html--元素显示优先级

    HTML元素的显示优先级 一.HTML元素的显示优先级(显示层次问题,哪个在上哪个在下!总是显示在最前面)        帧元素>HTML元素优先,表单元素总>非表单元素优先        ...

  9. loj2031 「SDOI2016」数字配对

    跑最大费用最大流,注意到每次 spfa 出来的 cost 一定是越来越少的,啥时小于 \(0\) 了就停了吧. #include <iostream> #include <cstri ...

  10. Nginx从入门到放弃-第2章 基础篇

    2-1 什么是Nginx 2-2 常见的中间件服务 2-3 Nginx的特性_实现优点1 2-4 Nginx特性_实现优点2 2-5 Nginx特性_实现优点3 2-6 Nginx特性_实现优点4 2 ...