Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

/*
这道题看了PoPoQQQ的解释感觉很显然的样子,但有很多细节不懂。
先用容斥原理把原询问分成四个询问,每次询问就是1<=x<=n,1<=y<=m了。
然后莫比乌斯反演一通乱搞,没大懂。
*/
#include<cstdio>
#include<iostream>
#define N 50010
#define lon long long
using namespace std;
int f[N],prime[N],num,mul[N],sum[N];
void get_mul(){
mul[]=;
for(int i=;i<N;i++){
if(!f[i]){
prime[++num]=i;
mul[i]=-;
}
for(int j=;j<=num&&prime[j]*i<N;j++){
f[prime[j]*i]=;
mul[prime[j]*i]=-mul[i];
if(i%prime[j]==){
mul[prime[j]*i]=;
break;
}
}
}
}
lon solve(int n,int m){
lon ans=;
if(n>m) swap(n,m);
for(int i=,last=;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(lon)(sum[last]-sum[i-])*(n/i)*(m/i);
}
return ans;
}
int main(){
get_mul();
for(int i=;i<N;i++) sum[i]=sum[i-]+mul[i];
int T;scanf("%d",&T);
while(T--){
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
lon ans=solve(b/k,d/k)-solve((a-)/k,d/k)-solve((c-)/k,b/k)+solve((a-)/k,(c-)/k);
printf("%lld\n",ans);
}
return ;
}

Problem b(bzoj 2301)的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  3. BZOJ 2301 Problem b

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 冬令营听了莫比乌斯,这就是宋老师上课讲的例题咯[今天来实现一下] #include& ...

  4. BZOJ 2301 Problem b(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2301 题意:每次给出a,b,c,d,K.求有多少数对(x,y)满足a<=x< ...

  5. BZOJ 2301 Problem B(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:给a,b,c,d,k,求gcd(x,y)==k的个数(a<=x<=b,c&l ...

  6. bzoj 2301: [HAOI2011]Problem b mobius反演 RE

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数. 设F( ...

  7. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  8. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  9. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

随机推荐

  1. ASP.NET WebApi 路由配置

    ASP.NET Web API路由是整个API的入口.我们访问某个资源就是通过路由映射找到对应资源的URL.通过URL来获取资源的. 对于ASP.NET Web API内部实现来讲,我们的请求最终将定 ...

  2. Java多线程 编写三各类Ticket、SaleWindow、TicketSaleCenter分别代表票信息、售票窗口、售票中心。 售票中心分配一定数量的票,由若干个售票窗口进行出售,利用你所学的线程知识来模拟此售票过程。

    package com.swift; import java.util.ArrayList; import java.util.HashMap; import java.util.List; impo ...

  3. 【前端_js】Json对象和Json字符串的区别

    转载1: Json对象和Json字符串的区别 转载2: JSON字符串与JSON对象的区别

  4. 201621123080《Java程序设计》第三周学习总结

    Week03-面向对象入门 1. 本周学习总结 2. 书面作业 1.以面向对象方式改造数据结构作业'有理数'(重点) 1.1 截图你主要代码(需要在程序中出现你的学号和姓名)并粘贴程序的git地址. ...

  5. MYSQL不能显示中文字,显示错误“ERROR 1366 (HY000): Incorrect string value: '\xE5\xBC\xA0\xE4\xB8\x89'”

    或者建表时带上编码utf8 CREATE TABLE `students`( `id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY, `name` VARCHAR( ...

  6. pandas按索引插入对应值的处理方法 - join

    在工作中遇到一个问题即,实时的车辆数据中,需要将车辆的vid(一个Series)对应上其通用名称,以及车辆用途等信息进行统计. 正常的小规模操作是利用一个循环,查找vid 在另一张vid对应车辆名称用 ...

  7. Python中的可迭代对象,迭代器与生成器

    先来看一张概览图,关于容器(container).可迭代对象(Iterable).迭代器(iterator).生成器(generator). 一.容器(container) 容器就是一个用来存储多个元 ...

  8. perl-basic-分支&循环

    if elsif shorter if: if+condition放在句子尾部. use strict; use warnings; my $word = "antidisestablish ...

  9. 使用html+javascriptt实现的简易四则运算(初学JavaScript笔记)

    今天第一天学javascript,做了个简易的四则运算,提供参考,效果图: html代码: <!DOCTYPE html> <html > <head > < ...

  10. SpringBoot接收前端参数的三种方法

    都是以前的笔记了,有时间就整理出来了,SpringBoot接收前端参数的三种方法,首先第一种代码: @RestController public class ControllerTest { //访问 ...