题目大意

给出两个\(01\)序列\(A\)和\(B\)

哈明距离定义为两个长度相同的序列中,有多少个对应位置上的数字不一样

"00111" 和 "10101"的距离为2

\(Q\)次询问,每次询问给出\(p_1,p_2,len\)

求\(a{p_1},a{p_1+1}...a_{p_1+len-1}\) 和 \(b_{p_1},b_{p_1+1}...b_{p_1+len-1}\)两个子串的哈明距离

注意:本题中的序列是从\(0\)开始编号的:\(a_0,a_1,...,a_{n-1}\)

\(1\leq |A|.|B|\leq 2*10^5,1\leq Q\leq 4*10^5\)

\(0 \leq p_1 \leq |a| - len\),\(0 \leq p_2 \leq |b| - len\)

分析

哈明距离可以转化成异或后有多少个\(1\)

考虑如何快速的比较两个字符串

我们先求出每个位置往后\(32\)位/\(64\)位的压位后的值

这样之后再暴力的复杂度就变成了\(\frac {len} {32}\)

我们再考虑对\(A\)串分块

每长度\(T\)分一块

预处理\(dif[i][j]\)表示\(A\)中第\(i\)块整个块 和 \(B\)中\(j\)开始的长度为\(T\)的串的哈明距离

\(O(\frac n T *m *\frac T {32})=O(\frac {n*m} {32})\)

对于询问

左右两边暴力扫\(O(T)\)

中间块内的用预处理直接求\(O(\frac n T)\)

算出来\(T=\sqrt n\)最优

同时T要是\(32\)/\(64\)的倍数

原题空间256M好像开不到\(n*\sqrt n\)的数组要调调参数

优化

块内的复杂度\(O(\frac {n*m} {32})\)小心脏承受不住

可以用FFT优化

s[i]==1的FFT数组中设为1,否则设为-1

将块中串反过来,卷积一波

求出来的值就是\(同-异\)

而块的大小为\(同+异\)

\(\frac {同+异-(同-异)} 2=异\)

这样就可以不用1算一次,0算一次再用总数减常数那么大了

结果越跑越慢

各种调参数到5000左右最快了

组合

如果两个算法合起来就完美了(越写越慢还好意思说)

注意

unsigned满位后左移一位可以看作把最高位扔掉后左移一位

bitset的count()是暴力

正确姿势:预处理1<<16内每个数有多少个1,分段算

FFT有负数用round()取整

solution(分块+压位)

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
#include <bitset>
using namespace std;
typedef unsigned long long ull;
const int S=450;
const int M=200003;
const int N=1<<16; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} char s[M];
char t[M];
int n,m,Q;
int sn,MX;
int cnt[N];
ull aw[M],bw[M];
int dif[S][M]; int loc(int x){
return x/sn+1;
} int getL(int x){
return (x-1)*sn;
} int getR(int x){
return x*sn-1;
} int getP(int x){
int L=getL(loc(x));
return x-L+1;
} int main(){
int i,j,k,BL,BR,L,R,x,y,z,len; scanf("%s%s",s,t);
n=strlen(s); m=strlen(t);
sn=448; MX=loc(n); for(i=0;i<N;i++) cnt[i]=cnt[i>>1]+(i&1); for(i=0;i+63<n;i++)
for(j=i;j<i+64;j++)
aw[i]=aw[i]<<1|(s[j]=='1'); for(i=0;i+63<m;i++)
for(j=i;j<i+64;j++)
bw[i]=bw[i]<<1|(t[j]=='1'); int ful=N-1;
for(i=1;i<=MX;i++){
L=getL(i);
if(L+sn-1>=n) break;
for(j=0;j+sn-1<m;j++){
x=L,y=j;
for(k=7;k>0;k--){
ull tp=aw[x]^bw[y];
dif[i][j]+=cnt[tp&ful]+cnt[tp>>16&ful]+cnt[tp>>32&ful]+cnt[tp>>48];
x+=64; y+=64;
}
}
} Q=rd(); int ans;
while(Q--){
ans=0;
x=rd(),z=rd(),len=rd();
y=x+len-1;
BL=loc(x); BR=loc(y);
if(BL+1>=BR){
for(i=x;i<=y;i++) ans+=s[i]!=t[z+i-x];
}
else{
if(getL(BL)!=x) BL++;
if(getR(BR)!=y) BR--;
L=getL(BL); R=getR(BR);
for(i=BL;i<=BR;i++)
ans+=dif[i][z+getL(i)-x];
for(i=x;i<L;i++) ans+=s[i]!=t[z+i-x];
for(i=y;i>R;i--) ans+=s[i]!=t[z+i-x];
}
printf("%d\n",ans);
} return 0;
}

solution(分块+FFT)

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef double db;
const int N=262144;
const int S=207;
const int M=200003;
const db pi=acos(-1.0); inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} char s[M];
char t[M];
int rev[N];
int n,m,Q;
int sn,MX; struct CP{
db x,i;
CP(db xx=0.0,db ii=0.0){x=xx;i=ii;}
}a[N],b[N],c[N];
CP operator +(CP x,CP y){return CP(x.x+y.x,x.i+y.i);}
CP operator -(CP x,CP y){return CP(x.x-y.x,x.i-y.i);}
CP operator *(CP x,CP y){return CP(x.x*y.x-x.i*y.i,x.i*y.x+x.x*y.i);} void FFT(CP *a,int fl){
int i,j,k;
CP W,Wn,u,v;
for(i=0;i<N;i++) if(i<rev[i]) swap(a[i],a[rev[i]]); for(i=2;i<=N;i<<=1){
Wn=CP(cos(2*pi/i),fl*sin(2*pi/i));
for(j=0;j<N;j+=i){
W=CP(1,0);
for(k=j;k<j+i/2;k++,W=W*Wn){
u=a[k];
v=a[k+i/2]*W;
a[k]=u+v;
a[k+i/2]=u-v;
}
}
}
if(fl==1) return ;
for(i=0;i<N;i++) a[i].x/=N;
} int dif[S][M]; int loc(int x){
return x/sn+1;
} int getL(int x){
return max(1,(x-1)*sn);
} int getR(int x){
return min(n,x*sn-1);
} int getP(int x){
int L=getL(loc(x));
return x-L+1;
} int main(){
int i,j,BL,BR,L,R,x,y,z,len; scanf("%s%s",s+1,t+1);
n=strlen(s+1); m=strlen(t+1);
sn=5000; MX=loc(n); for(i=0;i<N;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?(N>>1):0);
for(i=1;i<=m;i++) b[i]=(t[i]=='1')?1:-1;
FFT(b,1); for(i=1;i<=MX;i++){
L=getL(i);
R=getR(i);
for(j=0;j<N;j++) a[j]=CP();
int tt=0;
for(j=R;j>=L;j--) a[++tt]=(s[j]=='1')?1:-1;
FFT(a,1); for(j=0;j<N;j++) c[j]=a[j]*b[j];
FFT(c,-1);
int sss=R-L+1;
for(j=1;j<=m;j++) dif[i][j]=(sss-round(c[j+sss].x))/2;
} Q=rd(); int ans;
while(Q--){
ans=0;
x=rd(),z=rd(),len=rd();
x++;z++;//ÎÒ´Ó 1 ´æ
y=x+len-1;
BL=loc(x);BR=loc(y);
if(BL+1>=BR){
for(i=x;i<=y;i++) ans+=(s[i]!=t[z+i-x]);
}
else{
if(getL(BL)!=x) BL++;
if(getR(BR)!=y) BR--;
L=getL(BL); R=getR(BR);
for(i=x;i<L;i++) ans+=(s[i]!=t[z+i-x]);
for(i=BL;i<=BR;i++)
ans+=dif[i][z+getL(i)-x];
for(i=y;i>R;i--) ans+=(s[i]!=t[z+i-x]);
}
printf("%d\n",ans);
} return 0;
}

cf 472G Design Tutorial: Increase the Constraints 分块+压位/FFT的更多相关文章

  1. 【CF472G】Design Tutorial: Increase the Constraints

    Description 给出两个01序列\(A\)和\(B\) 要求回答\(q\)个询问每次询问\(A\)和\(B\)中两个长度为\(len\)的子串的哈明距离 ​ 哈明距离的值即有多少个位置不相等 ...

  2. CF472G Increase the Constraints

    Increase the Constraints 定义两个等长的01字符串的汉明距离为它们字符不同的对应位置的个数. 给你两个01串S,T,现在有q个询问,每次指定S,T中两个定长的子串询问它们的汉明 ...

  3. Codeforces #270 D. Design Tutorial: Inverse the Problem

    http://codeforces.com/contest/472/problem/D D. Design Tutorial: Inverse the Problem time limit per t ...

  4. cf472D Design Tutorial: Inverse the Problem

    D. Design Tutorial: Inverse the Problem time limit per test 2 seconds memory limit per test 256 mega ...

  5. cf472C Design Tutorial: Make It Nondeterministic

    C. Design Tutorial: Make It Nondeterministic time limit per test 2 seconds memory limit per test 256 ...

  6. cf472B Design Tutorial: Learn from Life

    B. Design Tutorial: Learn from Life time limit per test 1 second memory limit per test 256 megabytes ...

  7. cf472A Design Tutorial: Learn from Math

    A. Design Tutorial: Learn from Math time limit per test 1 second memory limit per test 256 megabytes ...

  8. Codeforces Round #270--B. Design Tutorial: Learn from Life

    Design Tutorial: Learn from Life time limit per test 1 second memory limit per test 256 megabytes in ...

  9. Qsys 设计流程---Qsys System Design Tutorial

    Qsys 设计流程 ---Qsys System Design Tutorial 1.Avalon-MM Pipeline Bridge Avalon-MM Pipeline Bridge在slave ...

随机推荐

  1. oc 数据类型转换

    NSNumber转NSString: 假设现有一NSNumber的变量A,要转换成NSString类型的B 方法如下: NSNumberFormatter* numberFormatter = [[N ...

  2. UIDeviceOrientation 和 UIInterfaceOrientation

    有时候,我们处理自动布局时,需要获取到屏幕旋转方向: 以下为本人亲测: UIInterfaceOrientation: 我们需要在- (void)viewDidLoad或其他方法中添加观察者,检测屏幕 ...

  3. 如何用纯 CSS 创作一个方块旋转动画

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/gjgyWm 可交互视频 ...

  4. JavaScript取出字符串中括号里的内容

    /** * 取出中括号内的内容 * @param text * @returns {string} */ export function getBracketStr(text) { let resul ...

  5. Vue基础指令集锦

    v-model双向绑定数据 <input type="text" v-model="msg"> {{msg}} ###v-on 事件 <div ...

  6. 面试题--如何防止sql注入,使用PreparedStatement的预编译,传入的内容就不会和原来的语句发生任何匹配的关系,达到防止注入的方法

    PreparedStatement的用法 jdbc(java database connectivity,java数据库连接)的api中的主要的四个类之一的java.sql.statement要求开发 ...

  7. matplotlib学习记录 六

    # 绘制多数据条形图 # 假设你知道了列表a中电影分别在2017-09-14(b_14),2017-09-15(b_15), # 2017-09-16(b_16)三天的票房,为了展示列表中电影本身的票 ...

  8. Python3 S.join() 个人笔记

    S.join(iterable) S:需要的分隔符 iterable:被分割对象 . 注意括号里必须只能有一个成员,比如 ','.join('a','b') 这种写法是行不通的 实例:'-'.join ...

  9. Java-basic-6-方法

    命令行参数的使用 public class test { public static void main(String args[]) { for(int i = 0; i < args.len ...

  10. Codeforces Round #505 D. Recovering BST(区间DP)

    首先膜一发网上的题解.大佬们tql. 给你n个单调递增的数字,问是否能够把这些数字重新构成一棵二叉搜索树(BST),且所有的父亲结点和叶子结点之间的gcd > 1? 这个题场上是想暴力试试的.结 ...