【BZOJ3251】树上三角形 暴力
【BZOJ3251】树上三角形
Description
Input
Output
Sample Input
1 2 3 4 5
1 2
2 3
3 4
1 5
0 1 3
0 4 5
1 1 4
0 2 5
0 2 3
Sample Output
Y
Y
N
HINT
对于100%的数据,n,q<=100000,点权范围[1,231-1]
题解:正常人看到题,大概都会想到什么树剖+树套树套树什么的吧~
一种naive的做法就是,先将路径上的所有数都拿出来排序,每次只需要判断相邻的三个数能否形成三角形就行了。
仔细观察发现,如果答案为N,那么最坏的情况,就是在排完序后,任意相邻的三个数都满足x<y<z且x+y=z。这不就是斐波那契数列吗?
有什么用呢?
斐波那契数列的增长不是指数级的吗?
也就意味着一旦路径的长度>logn(实测f(47)>2147483647,所以取47或50即可),我们的结果就是Y。
难道我们还要用倍增求出路径长度吗?
朴素LCA就行辣!一旦跑了50次,就直接输出Y。否则就将所有数拿出来,用naive的做法搞一下就行了。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100010;
int n,m,sum,cnt;
int to[maxn<<1],next[maxn<<1],head[maxn];
int fa[maxn],dep[maxn],v[maxn],p[60];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void dfs(int x)
{
for(int i=head[x];i!=-1;i=next[i]) fa[to[i]]=x,dep[to[i]]=dep[x]+1,dfs(to[i]);
}
void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
n=rd(),m=rd();
int i,j,a,b,c;
for(i=1;i<=n;i++) v[i]=rd();
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b);
dep[1]=1,dfs(1);
for(i=1;i<=m;i++)
{
c=rd(),a=rd(),b=rd(),sum=0;
if(c)
{
v[a]=b;
continue;
}
if(dep[a]<dep[b]) swap(a,b);
while(dep[a]>dep[b]&&sum<50) p[++sum]=v[a],a=fa[a];
while(a!=b&&sum<50) p[++sum]=v[a],p[++sum]=v[b],a=fa[a],b=fa[b];
p[++sum]=v[a];
if(sum>=50)
{
printf("Y\n");
continue;
}
sort(p+1,p+sum+1);
for(j=3;j<=sum;j++)
{
if(p[j]-p[j-1]<p[j-2])
{
printf("Y\n");
break;
}
}
if(j>sum) printf("N\n");
}
return 0;
}
【BZOJ3251】树上三角形 暴力的更多相关文章
- BZOJ3251:树上三角形(乱搞)
Description 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改. Input 第一行两个整数n ...
- bzoj3251: 树上三角形(思维题)
神tmWA了8发调了20min才发现输出没回车T T... 首先考虑一段什么样的序列才会是N... 显然最长的形式就是斐波那契,前两数之和等于第三数之和,这样就无法组成三角形并且序列最长.可以发现在i ...
- BZOJ3251 : 树上三角形
BZOJ AC1000题纪念~~~ 将x到y路径上的点权从小到大排序 如果不存在b[i]使得b[i]+b[i+1]>b[i+2]则无解 此时b数列增长速度快于斐波那契数列,当达到50项时就会超过 ...
- 【bzoj3251】树上三角形 朴素LCA+暴力
题目描述 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改. 输入 第一行两个整数n.q表示树的点数和操 ...
- 树上三角形 BZOJ3251
分析: 模拟赛T3,其实很水,当时出于某些原因,没有去写这道题... len>46必定有解 为了满足不是三角形,那么斐波那契数列是最优选择,而斐波那契数列的第46项超过了2^31-1,所以超过4 ...
- BZOJ 3251 树上三角形
NOIP的东西回成都再说吧... 这题暴力. #include<iostream> #include<cstdio> #include<cstring> #incl ...
- Codeforces Round #264 (Div. 2) E. Caisa and Tree 树上操作暴力
http://codeforces.com/contest/463/problem/E 给出一个总节点数量为n的树,每个节点有权值,进行q次操作,每次操作有两种选项: 1. 询问节点v到root之间的 ...
- BZOJ 3251 树上三角形:LCA【构成三角形的结论】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3251 题意: 给你一棵树,n个节点,每个点的权值为w[i]. 接下来有m个形如(p,a,b ...
- bzoj3251
3251: 树上三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 637 Solved: 262[Submit][Status][Discuss ...
随机推荐
- LeetCode OJ-- Length of Last Word
https://oj.leetcode.com/problems/length-of-last-word/ 对一个字符串遍历,求最后一个单词的长度,如果有 ‘ ’,则切开了. 字符串的最后一个字符为 ...
- JWT在PHP使用及问题处理
官网 https://jwt.io/ 3.0版本 https://github.com/lcobucci/jwt 安装 composer require lcobucci/jwt 依赖 PHP 5.5 ...
- Codeforces 583 DIV2 Robot's Task 贪心
原题链接:http://codeforces.com/problemset/problem/583/B 题意: 就..要打开一个电脑,必须至少先打开其他若干电脑,每次转向有个花费,让你设计一个序列,使 ...
- golang实现dns域名解析(二)
上一节已经讲了如何构造dns请求包的情况,这一节接着上一节的情况,谈谈dns查询报文中的问题部分.问题部分中每个问题的格式如下: 查询名是要查找的名字,它是一个或者多个标识符的序列.每个标识符以首字母 ...
- 解决vagrant不能正常挂载目录的问题
解决方案: vagrant plugin install vagrant-vbguest
- LeakCanary——直白的展现Android中的内存泄露
之前碰到的OOM问题,终于很直白的呈现在我的眼前:我尝试了MAT,但是发现不怎么会用.直到今天终于发现了这个新工具: 当我们的App中存在内存泄露时会在通知栏弹出通知: 当点击该通知时,会跳转到具体的 ...
- mysql赋给用户权限grant all privileges on
查看mysql用户表的结构,Field项都是各类权限限制 Host限制登录的IP,User限制登录的用户,Delete_priv限制删除权限,Grant_priv限制权限授予,Super_priv为超 ...
- 【GLSL教程】(八)纹理贴图 【转】
http://blog.csdn.net/racehorse/article/details/6664717 简单的纹理贴图(Simple Texture) 为了在GLSL中应用纹理,我们需要访问每个 ...
- Webpack DLL
参考自:https://www.jianshu.com/p/a5b3c2284bb6 在用 Webpack 打包的时候,对于一些不经常更新的第三方库,比如 react,lodash,我们希望能和自己的 ...
- java中的值传递和引用传递区别
值传递:(形式参数类型是基本数据类型):方法调用时,实际参数把它的值传递给对应的形式参数,形式参数只是用实际参数的值初始化自己的存储单元内容,是两个不同的存储单元,所以方法执行中形式参数值的改变不影响 ...