基于单层决策树的AdaBoost算法源码
基于单层决策树的AdaBoost算法源码
Mian.py
# -*- coding: utf-8 -*-
# coding: UTF-8 import numpy as np
from AdaBoost import AdaBoost
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score def main(): # load data
dataset = np.loadtxt('data.txt', delimiter=",")
x = dataset[:, 0:8]
y = dataset[:, 8] # prepare train data
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0) # prepare test and train data
x_train=x_train.transpose()
y_train[y_train==1] = 1
y_train[y_train==0] = -1 x_test=x_test.transpose()
y_test[y_test == 1] = 1
y_test[y_test == 0] = -1 # train
ada=AdaBoost(x_train, y_train)
ada.train(50) # predict
y_pred = ada.pred(x_test)
print("total test", len(y_pred))
print("true pred", len(y_pred[y_pred == y_test]))
print("acc", accuracy_score(y_test, y_pred)) if __name__=='__main__':
main()
AdaBoost.py
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 29 14:19:42 2017 @author: Jarily
"""
# coding: UTF-8 import numpy as np
from WeakClassify import DecisionStump
from sklearn.metrics import accuracy_score class AdaBoost:
def __init__(self,X,y,Weaker=DecisionStump):
self.X=np.array(X)
self.y=np.array(y).flatten(1)
self.Weaker=Weaker
self.sums=np.zeros(self.y.shape) '''
W为权值,初试情况为均匀分布,即所有样本都为1/n
'''
self.W=np.ones((self.X.shape[1],1)).flatten(1)/self.X.shape[1] self.Q=0 #弱分类器的实际个数 # M 为弱分类器的最大数量,可以在main函数中修改 def train(self,M=5):
self.G={} # 表示弱分类器的字典
self.alpha={} # 每个弱分类器的参数
for i in range(M):
self.G.setdefault(i)
self.alpha.setdefault(i)
for i in range(M): # self.G[i]为第i个弱分类器
self.G[i]=self.Weaker(self.X,self.y)
e=self.G[i].train(self.W) #根据当前权值进行该个弱分类器训练
self.alpha[i]=1.0/2*np.log((1-e)/e) #计算该分类器的系数
res=self.G[i].pred(self.X) #res表示该分类器得出的输出 # 计算当前次数训练精确度
print("weak classfier acc", accuracy_score(self.y, res), "\n======================================================") # Z表示规范化因子
Z=self.W*np.exp(-self.alpha[i]*self.y*res.transpose())
self.W=(Z/Z.sum()).flatten(1) #更新权值
self.Q=i
# errorcnt返回分错的点的数量,为0则表示perfect
if (self.errorcnt(i)==0):
print("%d个弱分类器可以将错误率降到0"%(i+1))
break def errorcnt(self,t): #返回错误分类的点
self.sums=self.sums+self.G[t].pred(self.X).flatten(1)*self.alpha[t] pre_y=np.zeros(np.array(self.sums).shape)
pre_y[self.sums>=0]=1
pre_y[self.sums<0]=-1 t=(pre_y!=self.y).sum()
return t def pred(self,test_X): #测试最终的分类器
test_X=np.array(test_X)
sums=np.zeros(test_X.shape[1])
for i in range(self.Q+1):
sums=sums+self.G[i].pred(test_X).flatten(1)*self.alpha[i]
pre_y=np.zeros(np.array(sums).shape)
pre_y[sums>=0]=1
pre_y[sums<0]=-1
return pre_y
WeakClassifer.py
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 29 14:19:42 2017 @author: Jarily
""" import numpy as np '''
Decision Stump 单层决策树算法 弱分类器
''' class DecisionStump:
def __init__(self,X,y):
self.X=np.array(X)
self.y=np.array(y)
self.N=self.X.shape[0] def train(self,W,steps=100): #返回所有参数中阈值最小的
'''
W长度为N的向量,表示N个样本的权值
threshold_value为阈值
threshold_pos为第几个参数
threshold_tag为1或者-1.大于阈值则分为threshold_tag,小于阈值则相反
'''
min = float("inf") #将min初始化为无穷大
threshold_value=0;
threshold_pos=0;
threshold_tag=0;
self.W=np.array(W)
for i in range(self.N): # value表示阈值,errcnt表示错误的数量
value,errcnt = self.findmin(i,1,steps)
if (errcnt < min):
min = errcnt
threshold_value = value
threshold_pos = i
threshold_tag = 1
for i in range(self.N): # -1
value,errcnt= self.findmin(i,-1,steps)
if (errcnt < min):
min = errcnt
threshold_value = value
threshold_pos = i
threshold_tag = -1
#最终更新
self.threshold_value=threshold_value
self.threshold_pos=threshold_pos
self.threshold_res=threshold_tag
print(self.threshold_value,self.threshold_pos,self.threshold_res)
return min def findmin(self,i,tag,steps): #找出第i个参数的最小的阈值,tag为1或-1
t = 0
tmp = self.predintrain(self.X,i,t,tag).transpose()
errcnt = np.sum((tmp!=self.y)*self.W)
#print now
buttom=np.min(self.X[i,:]) #该项属性的最小值,下界
up=np.max(self.X[i,:]) #该项属性的最大值,上界
minerr = float("inf") #将minerr初始化为无穷大
value=0 #value表示阈值
st=(up-buttom)/steps #间隔
for t in np.arange(buttom,up,st):
tmp = self.predintrain(self.X,i,t,tag).transpose()
errcnt = np.sum((tmp!=self.y)*self.W)
if errcnt < minerr:
minerr=errcnt
value=t
return value,minerr def predintrain(self,test_set,i,t,tag): #训练时按照阈值为t时预测结果
test_set=np.array(test_set).reshape(self.N,-1)
pre_y = np.ones((np.array(test_set).shape[1],1))
pre_y[test_set[i,:]*tag<t*tag]=-1
return pre_y def pred(self,test_X): #弱分类器的预测
test_X=np.array(test_X).reshape(self.N,-1) #转换为N行X列,-1懒得算
pre_y = np.ones((np.array(test_X).shape[1],1))
pre_y[test_X[self.threshold_pos,:]*self.threshold_res<self.threshold_value*self.threshold_res]=-1
return pre_y
data
6,148,72,35,0,33.6,0.627,50,1
1,85,66,29,0,26.6,0.351,31,0
8,183,64,0,0,23.3,0.672,32,1
1,89,66,23,94,28.1,0.167,21,0
0,137,40,35,168,43.1,2.288,33,1
5,116,74,0,0,25.6,0.201,30,0
3,78,50,32,88,31.0,0.248,26,1
10,115,0,0,0,35.3,0.134,29,0
2,197,70,45,543,30.5,0.158,53,1
8,125,96,0,0,0.0,0.232,54,1
4,110,92,0,0,37.6,0.191,30,0
10,168,74,0,0,38.0,0.537,34,1
10,139,80,0,0,27.1,1.441,57,0
1,189,60,23,846,30.1,0.398,59,1
5,166,72,19,175,25.8,0.587,51,1
7,100,0,0,0,30.0,0.484,32,1
0,118,84,47,230,45.8,0.551,31,1
7,107,74,0,0,29.6,0.254,31,1
1,103,30,38,83,43.3,0.183,33,0
1,115,70,30,96,34.6,0.529,32,1
3,126,88,41,235,39.3,0.704,27,0
8,99,84,0,0,35.4,0.388,50,0
7,196,90,0,0,39.8,0.451,41,1
9,119,80,35,0,29.0,0.263,29,1
11,143,94,33,146,36.6,0.254,51,1
10,125,70,26,115,31.1,0.205,41,1
7,147,76,0,0,39.4,0.257,43,1
1,97,66,15,140,23.2,0.487,22,0
13,145,82,19,110,22.2,0.245,57,0
5,117,92,0,0,34.1,0.337,38,0
5,109,75,26,0,36.0,0.546,60,0
3,158,76,36,245,31.6,0.851,28,1
3,88,58,11,54,24.8,0.267,22,0
6,92,92,0,0,19.9,0.188,28,0
10,122,78,31,0,27.6,0.512,45,0
4,103,60,33,192,24.0,0.966,33,0
11,138,76,0,0,33.2,0.420,35,0
9,102,76,37,0,32.9,0.665,46,1
2,90,68,42,0,38.2,0.503,27,1
4,111,72,47,207,37.1,1.390,56,1
3,180,64,25,70,34.0,0.271,26,0
7,133,84,0,0,40.2,0.696,37,0
7,106,92,18,0,22.7,0.235,48,0
9,171,110,24,240,45.4,0.721,54,1
7,159,64,0,0,27.4,0.294,40,0
0,180,66,39,0,42.0,1.893,25,1
1,146,56,0,0,29.7,0.564,29,0
2,71,70,27,0,28.0,0.586,22,0
7,103,66,32,0,39.1,0.344,31,1
7,105,0,0,0,0.0,0.305,24,0
1,103,80,11,82,19.4,0.491,22,0
1,101,50,15,36,24.2,0.526,26,0
5,88,66,21,23,24.4,0.342,30,0
8,176,90,34,300,33.7,0.467,58,1
7,150,66,42,342,34.7,0.718,42,0
1,73,50,10,0,23.0,0.248,21,0
7,187,68,39,304,37.7,0.254,41,1
0,100,88,60,110,46.8,0.962,31,0
0,146,82,0,0,40.5,1.781,44,0
0,105,64,41,142,41.5,0.173,22,0
2,84,0,0,0,0.0,0.304,21,0
8,133,72,0,0,32.9,0.270,39,1
5,44,62,0,0,25.0,0.587,36,0
2,141,58,34,128,25.4,0.699,24,0
7,114,66,0,0,32.8,0.258,42,1
5,99,74,27,0,29.0,0.203,32,0
0,109,88,30,0,32.5,0.855,38,1
2,109,92,0,0,42.7,0.845,54,0
1,95,66,13,38,19.6,0.334,25,0
4,146,85,27,100,28.9,0.189,27,0
2,100,66,20,90,32.9,0.867,28,1
5,139,64,35,140,28.6,0.411,26,0
13,126,90,0,0,43.4,0.583,42,1
4,129,86,20,270,35.1,0.231,23,0
1,79,75,30,0,32.0,0.396,22,0
1,0,48,20,0,24.7,0.140,22,0
7,62,78,0,0,32.6,0.391,41,0
5,95,72,33,0,37.7,0.370,27,0
0,131,0,0,0,43.2,0.270,26,1
2,112,66,22,0,25.0,0.307,24,0
3,113,44,13,0,22.4,0.140,22,0
2,74,0,0,0,0.0,0.102,22,0
7,83,78,26,71,29.3,0.767,36,0
0,101,65,28,0,24.6,0.237,22,0
5,137,108,0,0,48.8,0.227,37,1
2,110,74,29,125,32.4,0.698,27,0
13,106,72,54,0,36.6,0.178,45,0
2,100,68,25,71,38.5,0.324,26,0
15,136,70,32,110,37.1,0.153,43,1
1,107,68,19,0,26.5,0.165,24,0
1,80,55,0,0,19.1,0.258,21,0
4,123,80,15,176,32.0,0.443,34,0
7,81,78,40,48,46.7,0.261,42,0
4,134,72,0,0,23.8,0.277,60,1
2,142,82,18,64,24.7,0.761,21,0
6,144,72,27,228,33.9,0.255,40,0
2,92,62,28,0,31.6,0.130,24,0
1,71,48,18,76,20.4,0.323,22,0
6,93,50,30,64,28.7,0.356,23,0
1,122,90,51,220,49.7,0.325,31,1
1,163,72,0,0,39.0,1.222,33,1
1,151,60,0,0,26.1,0.179,22,0
0,125,96,0,0,22.5,0.262,21,0
1,81,72,18,40,26.6,0.283,24,0
2,85,65,0,0,39.6,0.930,27,0
1,126,56,29,152,28.7,0.801,21,0
1,96,122,0,0,22.4,0.207,27,0
4,144,58,28,140,29.5,0.287,37,0
3,83,58,31,18,34.3,0.336,25,0
0,95,85,25,36,37.4,0.247,24,1
3,171,72,33,135,33.3,0.199,24,1
8,155,62,26,495,34.0,0.543,46,1
1,89,76,34,37,31.2,0.192,23,0
4,76,62,0,0,34.0,0.391,25,0
7,160,54,32,175,30.5,0.588,39,1
4,146,92,0,0,31.2,0.539,61,1
5,124,74,0,0,34.0,0.220,38,1
5,78,48,0,0,33.7,0.654,25,0
4,97,60,23,0,28.2,0.443,22,0
4,99,76,15,51,23.2,0.223,21,0
0,162,76,56,100,53.2,0.759,25,1
6,111,64,39,0,34.2,0.260,24,0
2,107,74,30,100,33.6,0.404,23,0
5,132,80,0,0,26.8,0.186,69,0
0,113,76,0,0,33.3,0.278,23,1
1,88,30,42,99,55.0,0.496,26,1
3,120,70,30,135,42.9,0.452,30,0
1,118,58,36,94,33.3,0.261,23,0
1,117,88,24,145,34.5,0.403,40,1
0,105,84,0,0,27.9,0.741,62,1
4,173,70,14,168,29.7,0.361,33,1
9,122,56,0,0,33.3,1.114,33,1
3,170,64,37,225,34.5,0.356,30,1
8,84,74,31,0,38.3,0.457,39,0
2,96,68,13,49,21.1,0.647,26,0
2,125,60,20,140,33.8,0.088,31,0
0,100,70,26,50,30.8,0.597,21,0
0,93,60,25,92,28.7,0.532,22,0
0,129,80,0,0,31.2,0.703,29,0
5,105,72,29,325,36.9,0.159,28,0
3,128,78,0,0,21.1,0.268,55,0
5,106,82,30,0,39.5,0.286,38,0
2,108,52,26,63,32.5,0.318,22,0
10,108,66,0,0,32.4,0.272,42,1
4,154,62,31,284,32.8,0.237,23,0
0,102,75,23,0,0.0,0.572,21,0
9,57,80,37,0,32.8,0.096,41,0
2,106,64,35,119,30.5,1.400,34,0
5,147,78,0,0,33.7,0.218,65,0
2,90,70,17,0,27.3,0.085,22,0
1,136,74,50,204,37.4,0.399,24,0
4,114,65,0,0,21.9,0.432,37,0
9,156,86,28,155,34.3,1.189,42,1
1,153,82,42,485,40.6,0.687,23,0
8,188,78,0,0,47.9,0.137,43,1
7,152,88,44,0,50.0,0.337,36,1
2,99,52,15,94,24.6,0.637,21,0
1,109,56,21,135,25.2,0.833,23,0
2,88,74,19,53,29.0,0.229,22,0
17,163,72,41,114,40.9,0.817,47,1
4,151,90,38,0,29.7,0.294,36,0
7,102,74,40,105,37.2,0.204,45,0
0,114,80,34,285,44.2,0.167,27,0
2,100,64,23,0,29.7,0.368,21,0
0,131,88,0,0,31.6,0.743,32,1
6,104,74,18,156,29.9,0.722,41,1
3,148,66,25,0,32.5,0.256,22,0
4,120,68,0,0,29.6,0.709,34,0
4,110,66,0,0,31.9,0.471,29,0
3,111,90,12,78,28.4,0.495,29,0
6,102,82,0,0,30.8,0.180,36,1
6,134,70,23,130,35.4,0.542,29,1
2,87,0,23,0,28.9,0.773,25,0
1,79,60,42,48,43.5,0.678,23,0
2,75,64,24,55,29.7,0.370,33,0
8,179,72,42,130,32.7,0.719,36,1
6,85,78,0,0,31.2,0.382,42,0
0,129,110,46,130,67.1,0.319,26,1
5,143,78,0,0,45.0,0.190,47,0
5,130,82,0,0,39.1,0.956,37,1
6,87,80,0,0,23.2,0.084,32,0
0,119,64,18,92,34.9,0.725,23,0
1,0,74,20,23,27.7,0.299,21,0
5,73,60,0,0,26.8,0.268,27,0
4,141,74,0,0,27.6,0.244,40,0
7,194,68,28,0,35.9,0.745,41,1
8,181,68,36,495,30.1,0.615,60,1
1,128,98,41,58,32.0,1.321,33,1
8,109,76,39,114,27.9,0.640,31,1
5,139,80,35,160,31.6,0.361,25,1
3,111,62,0,0,22.6,0.142,21,0
9,123,70,44,94,33.1,0.374,40,0
7,159,66,0,0,30.4,0.383,36,1
11,135,0,0,0,52.3,0.578,40,1
8,85,55,20,0,24.4,0.136,42,0
5,158,84,41,210,39.4,0.395,29,1
1,105,58,0,0,24.3,0.187,21,0
3,107,62,13,48,22.9,0.678,23,1
4,109,64,44,99,34.8,0.905,26,1
4,148,60,27,318,30.9,0.150,29,1
0,113,80,16,0,31.0,0.874,21,0
1,138,82,0,0,40.1,0.236,28,0
0,108,68,20,0,27.3,0.787,32,0
2,99,70,16,44,20.4,0.235,27,0
6,103,72,32,190,37.7,0.324,55,0
5,111,72,28,0,23.9,0.407,27,0
8,196,76,29,280,37.5,0.605,57,1
5,162,104,0,0,37.7,0.151,52,1
1,96,64,27,87,33.2,0.289,21,0
7,184,84,33,0,35.5,0.355,41,1
2,81,60,22,0,27.7,0.290,25,0
0,147,85,54,0,42.8,0.375,24,0
7,179,95,31,0,34.2,0.164,60,0
0,140,65,26,130,42.6,0.431,24,1
9,112,82,32,175,34.2,0.260,36,1
12,151,70,40,271,41.8,0.742,38,1
5,109,62,41,129,35.8,0.514,25,1
6,125,68,30,120,30.0,0.464,32,0
5,85,74,22,0,29.0,1.224,32,1
5,112,66,0,0,37.8,0.261,41,1
0,177,60,29,478,34.6,1.072,21,1
2,158,90,0,0,31.6,0.805,66,1
7,119,0,0,0,25.2,0.209,37,0
7,142,60,33,190,28.8,0.687,61,0
1,100,66,15,56,23.6,0.666,26,0
1,87,78,27,32,34.6,0.101,22,0
0,101,76,0,0,35.7,0.198,26,0
3,162,52,38,0,37.2,0.652,24,1
4,197,70,39,744,36.7,2.329,31,0
0,117,80,31,53,45.2,0.089,24,0
4,142,86,0,0,44.0,0.645,22,1
6,134,80,37,370,46.2,0.238,46,1
1,79,80,25,37,25.4,0.583,22,0
4,122,68,0,0,35.0,0.394,29,0
3,74,68,28,45,29.7,0.293,23,0
4,171,72,0,0,43.6,0.479,26,1
7,181,84,21,192,35.9,0.586,51,1
0,179,90,27,0,44.1,0.686,23,1
9,164,84,21,0,30.8,0.831,32,1
0,104,76,0,0,18.4,0.582,27,0
1,91,64,24,0,29.2,0.192,21,0
4,91,70,32,88,33.1,0.446,22,0
3,139,54,0,0,25.6,0.402,22,1
6,119,50,22,176,27.1,1.318,33,1
2,146,76,35,194,38.2,0.329,29,0
9,184,85,15,0,30.0,1.213,49,1
10,122,68,0,0,31.2,0.258,41,0
0,165,90,33,680,52.3,0.427,23,0
9,124,70,33,402,35.4,0.282,34,0
1,111,86,19,0,30.1,0.143,23,0
9,106,52,0,0,31.2,0.380,42,0
2,129,84,0,0,28.0,0.284,27,0
2,90,80,14,55,24.4,0.249,24,0
0,86,68,32,0,35.8,0.238,25,0
12,92,62,7,258,27.6,0.926,44,1
1,113,64,35,0,33.6,0.543,21,1
3,111,56,39,0,30.1,0.557,30,0
2,114,68,22,0,28.7,0.092,25,0
1,193,50,16,375,25.9,0.655,24,0
11,155,76,28,150,33.3,1.353,51,1
3,191,68,15,130,30.9,0.299,34,0
3,141,0,0,0,30.0,0.761,27,1
4,95,70,32,0,32.1,0.612,24,0
3,142,80,15,0,32.4,0.200,63,0
4,123,62,0,0,32.0,0.226,35,1
5,96,74,18,67,33.6,0.997,43,0
0,138,0,0,0,36.3,0.933,25,1
2,128,64,42,0,40.0,1.101,24,0
0,102,52,0,0,25.1,0.078,21,0
2,146,0,0,0,27.5,0.240,28,1
10,101,86,37,0,45.6,1.136,38,1
2,108,62,32,56,25.2,0.128,21,0
3,122,78,0,0,23.0,0.254,40,0
1,71,78,50,45,33.2,0.422,21,0
13,106,70,0,0,34.2,0.251,52,0
2,100,70,52,57,40.5,0.677,25,0
7,106,60,24,0,26.5,0.296,29,1
0,104,64,23,116,27.8,0.454,23,0
5,114,74,0,0,24.9,0.744,57,0
2,108,62,10,278,25.3,0.881,22,0
0,146,70,0,0,37.9,0.334,28,1
10,129,76,28,122,35.9,0.280,39,0
7,133,88,15,155,32.4,0.262,37,0
7,161,86,0,0,30.4,0.165,47,1
2,108,80,0,0,27.0,0.259,52,1
7,136,74,26,135,26.0,0.647,51,0
5,155,84,44,545,38.7,0.619,34,0
1,119,86,39,220,45.6,0.808,29,1
4,96,56,17,49,20.8,0.340,26,0
5,108,72,43,75,36.1,0.263,33,0
0,78,88,29,40,36.9,0.434,21,0
0,107,62,30,74,36.6,0.757,25,1
2,128,78,37,182,43.3,1.224,31,1
1,128,48,45,194,40.5,0.613,24,1
0,161,50,0,0,21.9,0.254,65,0
6,151,62,31,120,35.5,0.692,28,0
2,146,70,38,360,28.0,0.337,29,1
0,126,84,29,215,30.7,0.520,24,0
14,100,78,25,184,36.6,0.412,46,1
8,112,72,0,0,23.6,0.840,58,0
0,167,0,0,0,32.3,0.839,30,1
2,144,58,33,135,31.6,0.422,25,1
5,77,82,41,42,35.8,0.156,35,0
5,115,98,0,0,52.9,0.209,28,1
3,150,76,0,0,21.0,0.207,37,0
2,120,76,37,105,39.7,0.215,29,0
10,161,68,23,132,25.5,0.326,47,1
0,137,68,14,148,24.8,0.143,21,0
0,128,68,19,180,30.5,1.391,25,1
2,124,68,28,205,32.9,0.875,30,1
6,80,66,30,0,26.2,0.313,41,0
0,106,70,37,148,39.4,0.605,22,0
2,155,74,17,96,26.6,0.433,27,1
3,113,50,10,85,29.5,0.626,25,0
7,109,80,31,0,35.9,1.127,43,1
2,112,68,22,94,34.1,0.315,26,0
3,99,80,11,64,19.3,0.284,30,0
3,182,74,0,0,30.5,0.345,29,1
3,115,66,39,140,38.1,0.150,28,0
6,194,78,0,0,23.5,0.129,59,1
4,129,60,12,231,27.5,0.527,31,0
3,112,74,30,0,31.6,0.197,25,1
0,124,70,20,0,27.4,0.254,36,1
13,152,90,33,29,26.8,0.731,43,1
2,112,75,32,0,35.7,0.148,21,0
1,157,72,21,168,25.6,0.123,24,0
1,122,64,32,156,35.1,0.692,30,1
10,179,70,0,0,35.1,0.200,37,0
2,102,86,36,120,45.5,0.127,23,1
6,105,70,32,68,30.8,0.122,37,0
8,118,72,19,0,23.1,1.476,46,0
2,87,58,16,52,32.7,0.166,25,0
1,180,0,0,0,43.3,0.282,41,1
12,106,80,0,0,23.6,0.137,44,0
1,95,60,18,58,23.9,0.260,22,0
0,165,76,43,255,47.9,0.259,26,0
0,117,0,0,0,33.8,0.932,44,0
5,115,76,0,0,31.2,0.343,44,1
9,152,78,34,171,34.2,0.893,33,1
7,178,84,0,0,39.9,0.331,41,1
1,130,70,13,105,25.9,0.472,22,0
1,95,74,21,73,25.9,0.673,36,0
1,0,68,35,0,32.0,0.389,22,0
5,122,86,0,0,34.7,0.290,33,0
8,95,72,0,0,36.8,0.485,57,0
8,126,88,36,108,38.5,0.349,49,0
1,139,46,19,83,28.7,0.654,22,0
3,116,0,0,0,23.5,0.187,23,0
3,99,62,19,74,21.8,0.279,26,0
5,0,80,32,0,41.0,0.346,37,1
4,92,80,0,0,42.2,0.237,29,0
4,137,84,0,0,31.2,0.252,30,0
3,61,82,28,0,34.4,0.243,46,0
1,90,62,12,43,27.2,0.580,24,0
3,90,78,0,0,42.7,0.559,21,0
9,165,88,0,0,30.4,0.302,49,1
1,125,50,40,167,33.3,0.962,28,1
13,129,0,30,0,39.9,0.569,44,1
12,88,74,40,54,35.3,0.378,48,0
1,196,76,36,249,36.5,0.875,29,1
5,189,64,33,325,31.2,0.583,29,1
5,158,70,0,0,29.8,0.207,63,0
5,103,108,37,0,39.2,0.305,65,0
4,146,78,0,0,38.5,0.520,67,1
4,147,74,25,293,34.9,0.385,30,0
5,99,54,28,83,34.0,0.499,30,0
6,124,72,0,0,27.6,0.368,29,1
0,101,64,17,0,21.0,0.252,21,0
3,81,86,16,66,27.5,0.306,22,0
1,133,102,28,140,32.8,0.234,45,1
3,173,82,48,465,38.4,2.137,25,1
0,118,64,23,89,0.0,1.731,21,0
0,84,64,22,66,35.8,0.545,21,0
2,105,58,40,94,34.9,0.225,25,0
2,122,52,43,158,36.2,0.816,28,0
12,140,82,43,325,39.2,0.528,58,1
0,98,82,15,84,25.2,0.299,22,0
1,87,60,37,75,37.2,0.509,22,0
4,156,75,0,0,48.3,0.238,32,1
0,93,100,39,72,43.4,1.021,35,0
1,107,72,30,82,30.8,0.821,24,0
0,105,68,22,0,20.0,0.236,22,0
1,109,60,8,182,25.4,0.947,21,0
1,90,62,18,59,25.1,1.268,25,0
1,125,70,24,110,24.3,0.221,25,0
1,119,54,13,50,22.3,0.205,24,0
5,116,74,29,0,32.3,0.660,35,1
8,105,100,36,0,43.3,0.239,45,1
5,144,82,26,285,32.0,0.452,58,1
3,100,68,23,81,31.6,0.949,28,0
1,100,66,29,196,32.0,0.444,42,0
5,166,76,0,0,45.7,0.340,27,1
1,131,64,14,415,23.7,0.389,21,0
4,116,72,12,87,22.1,0.463,37,0
4,158,78,0,0,32.9,0.803,31,1
2,127,58,24,275,27.7,1.600,25,0
3,96,56,34,115,24.7,0.944,39,0
0,131,66,40,0,34.3,0.196,22,1
3,82,70,0,0,21.1,0.389,25,0
3,193,70,31,0,34.9,0.241,25,1
4,95,64,0,0,32.0,0.161,31,1
6,137,61,0,0,24.2,0.151,55,0
5,136,84,41,88,35.0,0.286,35,1
9,72,78,25,0,31.6,0.280,38,0
5,168,64,0,0,32.9,0.135,41,1
2,123,48,32,165,42.1,0.520,26,0
4,115,72,0,0,28.9,0.376,46,1
0,101,62,0,0,21.9,0.336,25,0
8,197,74,0,0,25.9,1.191,39,1
1,172,68,49,579,42.4,0.702,28,1
6,102,90,39,0,35.7,0.674,28,0
1,112,72,30,176,34.4,0.528,25,0
1,143,84,23,310,42.4,1.076,22,0
1,143,74,22,61,26.2,0.256,21,0
0,138,60,35,167,34.6,0.534,21,1
3,173,84,33,474,35.7,0.258,22,1
1,97,68,21,0,27.2,1.095,22,0
4,144,82,32,0,38.5,0.554,37,1
1,83,68,0,0,18.2,0.624,27,0
3,129,64,29,115,26.4,0.219,28,1
1,119,88,41,170,45.3,0.507,26,0
2,94,68,18,76,26.0,0.561,21,0
0,102,64,46,78,40.6,0.496,21,0
2,115,64,22,0,30.8,0.421,21,0
8,151,78,32,210,42.9,0.516,36,1
4,184,78,39,277,37.0,0.264,31,1
0,94,0,0,0,0.0,0.256,25,0
1,181,64,30,180,34.1,0.328,38,1
0,135,94,46,145,40.6,0.284,26,0
1,95,82,25,180,35.0,0.233,43,1
2,99,0,0,0,22.2,0.108,23,0
3,89,74,16,85,30.4,0.551,38,0
1,80,74,11,60,30.0,0.527,22,0
2,139,75,0,0,25.6,0.167,29,0
1,90,68,8,0,24.5,1.138,36,0
0,141,0,0,0,42.4,0.205,29,1
12,140,85,33,0,37.4,0.244,41,0
5,147,75,0,0,29.9,0.434,28,0
1,97,70,15,0,18.2,0.147,21,0
6,107,88,0,0,36.8,0.727,31,0
0,189,104,25,0,34.3,0.435,41,1
2,83,66,23,50,32.2,0.497,22,0
4,117,64,27,120,33.2,0.230,24,0
8,108,70,0,0,30.5,0.955,33,1
4,117,62,12,0,29.7,0.380,30,1
0,180,78,63,14,59.4,2.420,25,1
1,100,72,12,70,25.3,0.658,28,0
0,95,80,45,92,36.5,0.330,26,0
0,104,64,37,64,33.6,0.510,22,1
0,120,74,18,63,30.5,0.285,26,0
1,82,64,13,95,21.2,0.415,23,0
2,134,70,0,0,28.9,0.542,23,1
0,91,68,32,210,39.9,0.381,25,0
2,119,0,0,0,19.6,0.832,72,0
2,100,54,28,105,37.8,0.498,24,0
14,175,62,30,0,33.6,0.212,38,1
1,135,54,0,0,26.7,0.687,62,0
5,86,68,28,71,30.2,0.364,24,0
10,148,84,48,237,37.6,1.001,51,1
9,134,74,33,60,25.9,0.460,81,0
9,120,72,22,56,20.8,0.733,48,0
1,71,62,0,0,21.8,0.416,26,0
8,74,70,40,49,35.3,0.705,39,0
5,88,78,30,0,27.6,0.258,37,0
10,115,98,0,0,24.0,1.022,34,0
0,124,56,13,105,21.8,0.452,21,0
0,74,52,10,36,27.8,0.269,22,0
0,97,64,36,100,36.8,0.600,25,0
8,120,0,0,0,30.0,0.183,38,1
6,154,78,41,140,46.1,0.571,27,0
1,144,82,40,0,41.3,0.607,28,0
0,137,70,38,0,33.2,0.170,22,0
0,119,66,27,0,38.8,0.259,22,0
7,136,90,0,0,29.9,0.210,50,0
4,114,64,0,0,28.9,0.126,24,0
0,137,84,27,0,27.3,0.231,59,0
2,105,80,45,191,33.7,0.711,29,1
7,114,76,17,110,23.8,0.466,31,0
8,126,74,38,75,25.9,0.162,39,0
4,132,86,31,0,28.0,0.419,63,0
3,158,70,30,328,35.5,0.344,35,1
0,123,88,37,0,35.2,0.197,29,0
4,85,58,22,49,27.8,0.306,28,0
0,84,82,31,125,38.2,0.233,23,0
0,145,0,0,0,44.2,0.630,31,1
0,135,68,42,250,42.3,0.365,24,1
1,139,62,41,480,40.7,0.536,21,0
0,173,78,32,265,46.5,1.159,58,0
4,99,72,17,0,25.6,0.294,28,0
8,194,80,0,0,26.1,0.551,67,0
2,83,65,28,66,36.8,0.629,24,0
2,89,90,30,0,33.5,0.292,42,0
4,99,68,38,0,32.8,0.145,33,0
4,125,70,18,122,28.9,1.144,45,1
3,80,0,0,0,0.0,0.174,22,0
6,166,74,0,0,26.6,0.304,66,0
5,110,68,0,0,26.0,0.292,30,0
2,81,72,15,76,30.1,0.547,25,0
7,195,70,33,145,25.1,0.163,55,1
6,154,74,32,193,29.3,0.839,39,0
2,117,90,19,71,25.2,0.313,21,0
3,84,72,32,0,37.2,0.267,28,0
6,0,68,41,0,39.0,0.727,41,1
7,94,64,25,79,33.3,0.738,41,0
3,96,78,39,0,37.3,0.238,40,0
10,75,82,0,0,33.3,0.263,38,0
0,180,90,26,90,36.5,0.314,35,1
1,130,60,23,170,28.6,0.692,21,0
2,84,50,23,76,30.4,0.968,21,0
8,120,78,0,0,25.0,0.409,64,0
12,84,72,31,0,29.7,0.297,46,1
0,139,62,17,210,22.1,0.207,21,0
9,91,68,0,0,24.2,0.200,58,0
2,91,62,0,0,27.3,0.525,22,0
3,99,54,19,86,25.6,0.154,24,0
3,163,70,18,105,31.6,0.268,28,1
9,145,88,34,165,30.3,0.771,53,1
7,125,86,0,0,37.6,0.304,51,0
13,76,60,0,0,32.8,0.180,41,0
6,129,90,7,326,19.6,0.582,60,0
2,68,70,32,66,25.0,0.187,25,0
3,124,80,33,130,33.2,0.305,26,0
6,114,0,0,0,0.0,0.189,26,0
9,130,70,0,0,34.2,0.652,45,1
3,125,58,0,0,31.6,0.151,24,0
3,87,60,18,0,21.8,0.444,21,0
1,97,64,19,82,18.2,0.299,21,0
3,116,74,15,105,26.3,0.107,24,0
0,117,66,31,188,30.8,0.493,22,0
0,111,65,0,0,24.6,0.660,31,0
2,122,60,18,106,29.8,0.717,22,0
0,107,76,0,0,45.3,0.686,24,0
1,86,66,52,65,41.3,0.917,29,0
6,91,0,0,0,29.8,0.501,31,0
1,77,56,30,56,33.3,1.251,24,0
4,132,0,0,0,32.9,0.302,23,1
0,105,90,0,0,29.6,0.197,46,0
0,57,60,0,0,21.7,0.735,67,0
0,127,80,37,210,36.3,0.804,23,0
3,129,92,49,155,36.4,0.968,32,1
8,100,74,40,215,39.4,0.661,43,1
3,128,72,25,190,32.4,0.549,27,1
10,90,85,32,0,34.9,0.825,56,1
4,84,90,23,56,39.5,0.159,25,0
1,88,78,29,76,32.0,0.365,29,0
8,186,90,35,225,34.5,0.423,37,1
5,187,76,27,207,43.6,1.034,53,1
4,131,68,21,166,33.1,0.160,28,0
1,164,82,43,67,32.8,0.341,50,0
4,189,110,31,0,28.5,0.680,37,0
1,116,70,28,0,27.4,0.204,21,0
3,84,68,30,106,31.9,0.591,25,0
6,114,88,0,0,27.8,0.247,66,0
1,88,62,24,44,29.9,0.422,23,0
1,84,64,23,115,36.9,0.471,28,0
7,124,70,33,215,25.5,0.161,37,0
1,97,70,40,0,38.1,0.218,30,0
8,110,76,0,0,27.8,0.237,58,0
11,103,68,40,0,46.2,0.126,42,0
11,85,74,0,0,30.1,0.300,35,0
6,125,76,0,0,33.8,0.121,54,1
0,198,66,32,274,41.3,0.502,28,1
1,87,68,34,77,37.6,0.401,24,0
6,99,60,19,54,26.9,0.497,32,0
0,91,80,0,0,32.4,0.601,27,0
2,95,54,14,88,26.1,0.748,22,0
1,99,72,30,18,38.6,0.412,21,0
6,92,62,32,126,32.0,0.085,46,0
4,154,72,29,126,31.3,0.338,37,0
0,121,66,30,165,34.3,0.203,33,1
3,78,70,0,0,32.5,0.270,39,0
2,130,96,0,0,22.6,0.268,21,0
3,111,58,31,44,29.5,0.430,22,0
2,98,60,17,120,34.7,0.198,22,0
1,143,86,30,330,30.1,0.892,23,0
1,119,44,47,63,35.5,0.280,25,0
6,108,44,20,130,24.0,0.813,35,0
2,118,80,0,0,42.9,0.693,21,1
10,133,68,0,0,27.0,0.245,36,0
2,197,70,99,0,34.7,0.575,62,1
0,151,90,46,0,42.1,0.371,21,1
6,109,60,27,0,25.0,0.206,27,0
12,121,78,17,0,26.5,0.259,62,0
8,100,76,0,0,38.7,0.190,42,0
8,124,76,24,600,28.7,0.687,52,1
1,93,56,11,0,22.5,0.417,22,0
8,143,66,0,0,34.9,0.129,41,1
6,103,66,0,0,24.3,0.249,29,0
3,176,86,27,156,33.3,1.154,52,1
0,73,0,0,0,21.1,0.342,25,0
11,111,84,40,0,46.8,0.925,45,1
2,112,78,50,140,39.4,0.175,24,0
3,132,80,0,0,34.4,0.402,44,1
2,82,52,22,115,28.5,1.699,25,0
6,123,72,45,230,33.6,0.733,34,0
0,188,82,14,185,32.0,0.682,22,1
0,67,76,0,0,45.3,0.194,46,0
1,89,24,19,25,27.8,0.559,21,0
1,173,74,0,0,36.8,0.088,38,1
1,109,38,18,120,23.1,0.407,26,0
1,108,88,19,0,27.1,0.400,24,0
6,96,0,0,0,23.7,0.190,28,0
1,124,74,36,0,27.8,0.100,30,0
7,150,78,29,126,35.2,0.692,54,1
4,183,0,0,0,28.4,0.212,36,1
1,124,60,32,0,35.8,0.514,21,0
1,181,78,42,293,40.0,1.258,22,1
1,92,62,25,41,19.5,0.482,25,0
0,152,82,39,272,41.5,0.270,27,0
1,111,62,13,182,24.0,0.138,23,0
3,106,54,21,158,30.9,0.292,24,0
3,174,58,22,194,32.9,0.593,36,1
7,168,88,42,321,38.2,0.787,40,1
6,105,80,28,0,32.5,0.878,26,0
11,138,74,26,144,36.1,0.557,50,1
3,106,72,0,0,25.8,0.207,27,0
6,117,96,0,0,28.7,0.157,30,0
2,68,62,13,15,20.1,0.257,23,0
9,112,82,24,0,28.2,1.282,50,1
0,119,0,0,0,32.4,0.141,24,1
2,112,86,42,160,38.4,0.246,28,0
2,92,76,20,0,24.2,1.698,28,0
6,183,94,0,0,40.8,1.461,45,0
0,94,70,27,115,43.5,0.347,21,0
2,108,64,0,0,30.8,0.158,21,0
4,90,88,47,54,37.7,0.362,29,0
0,125,68,0,0,24.7,0.206,21,0
0,132,78,0,0,32.4,0.393,21,0
5,128,80,0,0,34.6,0.144,45,0
4,94,65,22,0,24.7,0.148,21,0
7,114,64,0,0,27.4,0.732,34,1
0,102,78,40,90,34.5,0.238,24,0
2,111,60,0,0,26.2,0.343,23,0
1,128,82,17,183,27.5,0.115,22,0
10,92,62,0,0,25.9,0.167,31,0
13,104,72,0,0,31.2,0.465,38,1
5,104,74,0,0,28.8,0.153,48,0
2,94,76,18,66,31.6,0.649,23,0
7,97,76,32,91,40.9,0.871,32,1
1,100,74,12,46,19.5,0.149,28,0
0,102,86,17,105,29.3,0.695,27,0
4,128,70,0,0,34.3,0.303,24,0
6,147,80,0,0,29.5,0.178,50,1
4,90,0,0,0,28.0,0.610,31,0
3,103,72,30,152,27.6,0.730,27,0
2,157,74,35,440,39.4,0.134,30,0
1,167,74,17,144,23.4,0.447,33,1
0,179,50,36,159,37.8,0.455,22,1
11,136,84,35,130,28.3,0.260,42,1
0,107,60,25,0,26.4,0.133,23,0
1,91,54,25,100,25.2,0.234,23,0
1,117,60,23,106,33.8,0.466,27,0
5,123,74,40,77,34.1,0.269,28,0
2,120,54,0,0,26.8,0.455,27,0
1,106,70,28,135,34.2,0.142,22,0
2,155,52,27,540,38.7,0.240,25,1
2,101,58,35,90,21.8,0.155,22,0
1,120,80,48,200,38.9,1.162,41,0
11,127,106,0,0,39.0,0.190,51,0
3,80,82,31,70,34.2,1.292,27,1
10,162,84,0,0,27.7,0.182,54,0
1,199,76,43,0,42.9,1.394,22,1
8,167,106,46,231,37.6,0.165,43,1
9,145,80,46,130,37.9,0.637,40,1
6,115,60,39,0,33.7,0.245,40,1
1,112,80,45,132,34.8,0.217,24,0
4,145,82,18,0,32.5,0.235,70,1
10,111,70,27,0,27.5,0.141,40,1
6,98,58,33,190,34.0,0.430,43,0
9,154,78,30,100,30.9,0.164,45,0
6,165,68,26,168,33.6,0.631,49,0
1,99,58,10,0,25.4,0.551,21,0
10,68,106,23,49,35.5,0.285,47,0
3,123,100,35,240,57.3,0.880,22,0
8,91,82,0,0,35.6,0.587,68,0
6,195,70,0,0,30.9,0.328,31,1
9,156,86,0,0,24.8,0.230,53,1
0,93,60,0,0,35.3,0.263,25,0
3,121,52,0,0,36.0,0.127,25,1
2,101,58,17,265,24.2,0.614,23,0
2,56,56,28,45,24.2,0.332,22,0
0,162,76,36,0,49.6,0.364,26,1
0,95,64,39,105,44.6,0.366,22,0
4,125,80,0,0,32.3,0.536,27,1
5,136,82,0,0,0.0,0.640,69,0
2,129,74,26,205,33.2,0.591,25,0
3,130,64,0,0,23.1,0.314,22,0
1,107,50,19,0,28.3,0.181,29,0
1,140,74,26,180,24.1,0.828,23,0
1,144,82,46,180,46.1,0.335,46,1
8,107,80,0,0,24.6,0.856,34,0
13,158,114,0,0,42.3,0.257,44,1
2,121,70,32,95,39.1,0.886,23,0
7,129,68,49,125,38.5,0.439,43,1
2,90,60,0,0,23.5,0.191,25,0
7,142,90,24,480,30.4,0.128,43,1
3,169,74,19,125,29.9,0.268,31,1
0,99,0,0,0,25.0,0.253,22,0
4,127,88,11,155,34.5,0.598,28,0
4,118,70,0,0,44.5,0.904,26,0
2,122,76,27,200,35.9,0.483,26,0
6,125,78,31,0,27.6,0.565,49,1
1,168,88,29,0,35.0,0.905,52,1
2,129,0,0,0,38.5,0.304,41,0
4,110,76,20,100,28.4,0.118,27,0
6,80,80,36,0,39.8,0.177,28,0
10,115,0,0,0,0.0,0.261,30,1
2,127,46,21,335,34.4,0.176,22,0
9,164,78,0,0,32.8,0.148,45,1
2,93,64,32,160,38.0,0.674,23,1
3,158,64,13,387,31.2,0.295,24,0
5,126,78,27,22,29.6,0.439,40,0
10,129,62,36,0,41.2,0.441,38,1
0,134,58,20,291,26.4,0.352,21,0
3,102,74,0,0,29.5,0.121,32,0
7,187,50,33,392,33.9,0.826,34,1
3,173,78,39,185,33.8,0.970,31,1
10,94,72,18,0,23.1,0.595,56,0
1,108,60,46,178,35.5,0.415,24,0
5,97,76,27,0,35.6,0.378,52,1
4,83,86,19,0,29.3,0.317,34,0
1,114,66,36,200,38.1,0.289,21,0
1,149,68,29,127,29.3,0.349,42,1
5,117,86,30,105,39.1,0.251,42,0
1,111,94,0,0,32.8,0.265,45,0
4,112,78,40,0,39.4,0.236,38,0
1,116,78,29,180,36.1,0.496,25,0
0,141,84,26,0,32.4,0.433,22,0
2,175,88,0,0,22.9,0.326,22,0
2,92,52,0,0,30.1,0.141,22,0
3,130,78,23,79,28.4,0.323,34,1
8,120,86,0,0,28.4,0.259,22,1
2,174,88,37,120,44.5,0.646,24,1
2,106,56,27,165,29.0,0.426,22,0
2,105,75,0,0,23.3,0.560,53,0
4,95,60,32,0,35.4,0.284,28,0
0,126,86,27,120,27.4,0.515,21,0
8,65,72,23,0,32.0,0.600,42,0
2,99,60,17,160,36.6,0.453,21,0
1,102,74,0,0,39.5,0.293,42,1
11,120,80,37,150,42.3,0.785,48,1
3,102,44,20,94,30.8,0.400,26,0
1,109,58,18,116,28.5,0.219,22,0
9,140,94,0,0,32.7,0.734,45,1
13,153,88,37,140,40.6,1.174,39,0
12,100,84,33,105,30.0,0.488,46,0
1,147,94,41,0,49.3,0.358,27,1
1,81,74,41,57,46.3,1.096,32,0
3,187,70,22,200,36.4,0.408,36,1
6,162,62,0,0,24.3,0.178,50,1
4,136,70,0,0,31.2,1.182,22,1
1,121,78,39,74,39.0,0.261,28,0
3,108,62,24,0,26.0,0.223,25,0
0,181,88,44,510,43.3,0.222,26,1
8,154,78,32,0,32.4,0.443,45,1
1,128,88,39,110,36.5,1.057,37,1
7,137,90,41,0,32.0,0.391,39,0
0,123,72,0,0,36.3,0.258,52,1
1,106,76,0,0,37.5,0.197,26,0
6,190,92,0,0,35.5,0.278,66,1
2,88,58,26,16,28.4,0.766,22,0
9,170,74,31,0,44.0,0.403,43,1
9,89,62,0,0,22.5,0.142,33,0
10,101,76,48,180,32.9,0.171,63,0
2,122,70,27,0,36.8,0.340,27,0
5,121,72,23,112,26.2,0.245,30,0
1,126,60,0,0,30.1,0.349,47,1
1,93,70,31,0,30.4,0.315,23,0
基于单层决策树的AdaBoost算法源码的更多相关文章
- 基于单层决策树的AdaBoost算法原理+python实现
这里整理一下实验课实现的基于单层决策树的弱分类器的AdaBoost算法. 由于是初学,实验课在找资料的时候看到别人的代码中有太多英文的缩写,不容易看懂,而且还要同时看代码实现的细节.算法的原理什么的, ...
- Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结
Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 ...
- mahout算法源码分析之Collaborative Filtering with ALS-WR (四)评价和推荐
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with AL ...
- mahout算法源码分析之Collaborative Filtering with ALS-WR拓展篇
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with AL ...
- mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算 ...
- diff.js 列表对比算法 源码分析
diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Arra ...
- 基于Eclipse IDE的Ardupilot飞控源码阅读环境搭建
基于Eclipse IDE的Ardupilot飞控源码阅读环境搭建 作者:Awesome 日期:2017-10-21 需准备的软件工具 Ardupilot飞控源码 PX4 toolchain JAVA ...
- [Spark内核] 第34课:Stage划分和Task最佳位置算法源码彻底解密
本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这 ...
- 基于JDK1.8版本的hashmap源码笔记(二)
这一篇是接着上一篇写的, 上一篇的地址是:基于JDK1.8版本的hashmap源码分析(一) /** * 返回boolean类型的值,当集合中包含key的键值,就返回true,否则就返 ...
随机推荐
- vue-初识
一:vue基础1.1.Vue是一套构建用户界面的渐进式框架1.2.引入vue:<script src="https://unpkg.com/vue/dist/vue.js"& ...
- linux 命令——31 /etc/group文件(转)
Linux /etc/group文件与/etc/passwd和/etc/shadow文件都是有关于系统管理员对用户和用户组管理时相关的文件. linux /etc/group文件是有关于系统管理员对用 ...
- gearmand 编译 could not find gperf
安装步骤: #wget https://launchpad.net/gearmand/1.2/1.1.8/+download/gearmand-1.1.8.tar.gz #tar zxvf gearm ...
- 2018.6.29 JavaScript
一.使用JS数组实现冒泡排序 二.创建Teacher对象,添加(姓名.年龄.地址.学生对象[学生姓名,学生性别])属性 要求: 创建多个老师对象,每个老师下管理多个学生,显示每个老师下所有的学生信息 ...
- js 数组方法大集合,各方法是否改变原有的数组详解
不会改变原来数组的有: concat()---连接两个或更多的数组,并返回结果. every()---检测数组元素的每个元素是否都符合条件. some()---检测数组元素中是否有元素符合指定条件. ...
- python换行
python中如果一行代码太长,看着不方便时,怎么办? 只需要在需要换行的地方添加上符号 \ 就行了.
- Java异常处理的9个最佳实践
无论你是新手还是资深程序员,复习下异常处理的实践总是一件好事,因为这能确保你与你的团队在遇到问题时能够处理得了它. 在 Java 中处理异常并不是一件易事.新手觉得处理异常难以理解,甚至是资深开发者也 ...
- c++ 作业 10月13日 进制转换最简单方法,控制c++输出格式方法 教材50的表格自己实践一下 例题3.1 setfill() setw()
#include <iostream> #include <iomanip> using namespace std; int main(){ // int i; // cou ...
- cf492E. Vanya and Field(扩展欧几里得)
题意 $n \times n$的网格,有$m$个苹果树,选择一个点出发,每次增加一个偏移量$(dx, dy)$,最大化经过的苹果树的数量 Sol 上面那个互素一开始没看见,然后就GG了 很显然,若$n ...
- js函数带括号和不带括号赋给对象属性的区别
注意: 1.js为对象添加函数时,不要在函数后面加().一旦加了括号是表示将函数的返回值赋给对象的属性. 例:function test(){ document.writeln("我是js函 ...