数据聚合

数据聚合是数据处理的最后一步,通常是要使每一个数组生成一个单一的数值。

数据分类处理:

  • 分组:先把数据分为几组
  • 用函数处理:为不同组的数据应用不同的函数以转换数据
  • 合并:把不同组得到的结果合并起来

1.数据分类处理的核心: groupby()函数

导入模块:

import pandas as pd
import numpy as np
from pandas import Series,DataFrame

生成假数据

df = DataFrame({"sailer":np.random.randint(0,3,size=50),
"item":np.random.randint(0,3,size=50),
"price":np.random.randint(1,15,size = 50),
"weight":np.random.randint(50,150,size=50)})
df["sailer"] = df["sailer"].map({0:"李大妈",1:"王大爷",2:"宋大妈"})
df["item"] = df["item"].map({0:"白菜",1:"萝卜",2:"青椒"})
def convert(x):
return x-x%10
df["weight"] = df["weight"].map(convert)
df

如:

对数据进行分组,聚合操作

根据item进行分组,然后求出各个菜品的平均价格

g = df.groupby(by=["item"])["price"]
g.median()

表现形式如上边,数据格式为series

然后在根据sailer和item进行分类。

ret = df.groupby(by = ["sailer","item"])[["price"]].mean()          #price值变成dataframe二维数如下图:
ret.add_suffix("_mean")    #给列添加后缀         add_prefix()添加前缀

根据条件进行分组,然后自定义方法展示数据:如下

ret2 = df.groupby(by = ["sailer","item"])
def count(x):
       return (np.round(x.mean(),1),x.min(),x.max())                    #numpy中有round()方法是将小数四舍五入到给定的小数位数
ret2.agg(count)

aggregate()或agg()是指在指定轴上使用一个或多个操作进行聚合。

分组后对几个列添加不同的聚合映射关系

如下:对price求平均值,对重量求和

ret2 = df.groupby(by = ["sailer","item"])
ret2.agg({"price":"mean","weight":"sum"})

分组后使用透视表对数据进行聚合操作
pd.pivot_table(df,values=["sailer","weight"],index = ["sailer","item"],aggfunc ={"price":"mean","weight":"max"})

如下:对price、weight分别进行求平均值和最大值操作。

高级数据聚合

调用transform和apply实现上变相同的功能

df.groupby(["sailer","item"])[["price"]].apply(np.min)

#因为min,mean,median等聚合函数在numpy定义了,所以,调用聚合函数得去numpy中调用

# transform原来的数据有多长,现在的数据就有多长
# 有利于对和原来的数据进行合并。

使用transform对数据进行分组聚合操作

df1 = df.groupby(["sailer","item"])[["price"]].transform(np.mean)

df1.tail()

pandas中数据聚合【重点】的更多相关文章

  1. Pandas中数据的处理

    有两种丢失数据 ——None ——np.nan(NaN) None是python自带的,其类型为python object.因此,None不能参与到任何计算中 Object类型的运算比int类型的运算 ...

  2. pandas中数据框DataFrame获取每一列最大值或最小值

    1.python中数据框求每列的最大值和最小值 df.min() df.max()

  3. pandas中数据框的一些常见用法

    1.创建数据框或读取外部csv文件 创建数据框数据 """ 设计数据 """ import pandas as pd data = {&qu ...

  4. 利用Python进行数据分析-Pandas(第六部分-数据聚合与分组运算)

    对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节.在将数据集加载.融合.准备好之后,通常是计算分组统计或生成透视表.pandas提供了一个灵活高效的group ...

  5. (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    *从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...

  6. (数据科学学习手札97)掌握pandas中的transform

    本文示例文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 开门见山,在pandas中,transform是 ...

  7. (数据科学学习手札99)掌握pandas中的时序数据分组运算

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在使用pandas分析处理时间序列数据 ...

  8. MongoDB中的数据聚合工具Aggregate和Group

    周煦辰 2016-01-16 来说说MongoDB中的数据聚合工具. Aggregate是MongoDB提供的众多工具中的比较重要的一个,类似于SQL语句中的GROUP BY.聚合工具可以让开发人员直 ...

  9. 在Pandas中直接加载MongoDB的数据

    在使用Pandas进行数据处理的时候,我们通常从CSV或EXCEL中导入数据,但有的时候数据都存在数据库内,我们并没有现成的数据文件,这时候可以通过Pymongo这个库,从mongoDB中读取数据,然 ...

随机推荐

  1. gui - tkinter 开发

    GUI 用户交互界面 tkinter 介绍 tkinter python自带的gui库,对图形图像处理库tk的封装 其他gui:pythonwin,wxpython,pyQT.. 概念介绍 组件:组成 ...

  2. hadoop是什么?新手自学hadoop教程【附】大数据系统学习教程

    Hadoop是一个由Apache基金会所开发的分布式系统基础架构. Hadoop是一个专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式. Hadoop=HDFS(文件 ...

  3. linux 查看系统版本号(转)

    一.查看Linux内核版本命令(两种方法): 1.cat /proc/version [root@localhost ~]# cat /proc/versionLinux version 2.6.18 ...

  4. linux网页资料链接

    http://lab.xmirror.cn/  玄镜官网 https://blog.csdn.net/zxgmdzz/article/details/79207944      Navicat Pre ...

  5. MyBatis入门Bug集锦X1

  6. redis之进阶

    redis之进阶   redis redis介绍 redis的功能特性 1,高速读写 2,数据类型丰富 3,支持持久化 4,多种内存分配及回收策略 5,支持事务 6,消息队列.redis用的多的还是发 ...

  7. python数值类型与序列类型

    基本运算符 / 浮点除法 //整除 x**y  x的y次方 python中严格区分大小写 type(xx)/内置函数,查看变量xx的类型 id(xx)/内置函数,查看变量xx的内存地址 //----- ...

  8. 牛客网练习赛34-D-little w and Exchange(思维题)

    链接:https://ac.nowcoder.com/acm/contest/297/D 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5242 ...

  9. Java中

  10. TestNG ABC

    TestNG ABC 资源 官网 :http://testng.org/doc/index.html Maven示例 <dependency>             <groupI ...