JavaScript进阶 - 第3章 一起组团(数组)
第3章 一起组团(数组)
3-1 一起组团(什么是数组)
我们知道变量用来存储数据,一个变量只能存储一个内容。假设你想存储10个人的姓名或者存储20个人的数学成绩,就需要10个或20个变量来存储,如果需要存储更多数据,那就会变的更麻烦。我们用数组解决问题,一个数组变量可以存放多个数据。好比一个团,团里有很多人,如下我们使用数组存储5个学生成绩。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAiIAAAEKCAIAAACgwam7AAAgAElEQVR4nO2dfXRb533fe87O2f7ZGlJt09WNUzuxG78kCyAnk9O47eYmA7OTOMtyspMGTHKaZNlxTThtssaxTc1r2tmJoaZJ6ziG5s2wFBJ+Ey0xnO2aFiTojQIkiJAAEJQgghBESKQAERSESxIggLs/fuTjR/cNFyAucQF+P+ceHeriuRfP7778vs/v97zg10QAAADAMH6t1RUAAADQyUBmAAAAGAhkBgAAgIFAZgAAABgIZAYAAICBQGYAAAAYCGQGAACAgUBmAAAAGAhkBgAAgIFAZgAAABgIZAYAAICBQGYAAAAYCGQGAACAgUBmAAAAGAhkBgAAgIFAZgAAABgIZAYAAICBQGYAAAAYCGQGmB0hmSwLgiiK/q4uURTLgiAkk6IoplyurNcrL59yuYqZjJ4z56NRtY2+kZFwOnOBAH9grK9PrFbl54z09vIls16vWkkhmUwPDtLf6cFBRVvkh8QcDv78AJgfyAwwO6ueek1m4v39s8PDoihG7PZ8NCopvCoAoiiKYnpw0N/VJdl4j+/v7o719cm3oMUiOXPQas1Ho+nBQdoSTmfIZmP/ZWqRCwSCVmu5UGAHxvv7E06n3KiyIER6exNOJ6la1uslc9hGUio/JNbXF7Hb+a8AwORAZkAbkB4cLAuCv6urLAjk08uC4O/u5v0ylYz19eWj0WImIxEAwt/dLZEZxVBGImC5QCDW18efU1FmUi5XyGYLWiykVVmvlyoZsduZgKVcrtV6Ohz8GehT/oSS4IbJklitplwuKA1oIyAzwNQIySTz0f6uLuasZ4eHQzYbCz4idrvIhTIJpzPlcumRGT3RTLy/n5x+MZMhHZodHuaDDyoWczhmh4dpT8LpJKkg2WM7Y3195UIh5nAELRZtmeHzfkIyGerpYRIlimLW6w319AjT00ZccwCaC2QGmJqyILAIw9/VlXK5KKFEPprKkCsXRTFks5F/D1osFPewrBRt8qSZYq8JO6EoisVMxt/dnY9ERFFMDw4ybePFj04SczjYUSQVIZuND0pIToRkMt7fnwsEeKFKOJ2SqrLOofTgoL+7O/Xcc5KQi/anBwYk3UgAmA3IDDA7ZUGgHJS/q4vccdbrDVos8f5+KsDUIuv1UpRDzl2uCnKZkXfe0Ea6IooiHcVkRiIG+WiUfbtEZlIuF4ki+zqSGSqcj0aDViurWMhmk1SVBj6EenooylGMumaHhyl9hwQaMDOQGWBq8tFoyGYjZ01DAJijD9lsoigKySRlzAjqR6G/aybNJJ8ysl4v5axygQB5f6pAzWhGkjSjDhUW0JBKMbv4EWjyqrJiNS8RohlgciAzwOyUBaEsCCGbTeJPQzZbMZOhFj3tKWYytFNIJlmPPX8IkxmNOIbfSDZ4mZGLAR/NsN5+ltMTksmg1UqdKPzhNaMZ1hPDDz2QbzqHbgPQQiAzwNRQh4o0oxWNiqJIWSkW64iimHA6qQAl2WomzahLn/7m+2Mk8DKjqEZqfTP0N6X4ileuxPv72c5iJsN328QcDsVeIroCoZ4eRY0J2WwsuQeAaYHMALNTzGSoS18URT6soc55Sp2xknzEU3MIAKW26O9YXx/9Vx4o6I9mFGVGXMt9xRwO2hlzOOSZN3nXC+vFUZvgyX8jAKYFMgPMDnXD0Dz8iN1OczNFykdZLBG7nZeWsiDkAgFaIEC7b4bUq16ZaSCaYTCZ4ZUv3t9Pg+gidnu8v18+EwgyA9odyAxoDyghxma0kMbQ5HmmNBG7nUagzQ4Pa/fNiKJI/R8Ru5366nUmzertm+EJ9fQwjRTX9GN15ml3d7lQoBygZGJmPhqN9PbmIxGFaaS9vUiaAfMDmQGmhtQiYrdTHwzpSi4QII0R14Y7UyaN7w/X6OSn0Wg0Pq0sCEzA+On6tK0mu/r6SBLkHfUs30XTSCUjzcS1kW90bNBiKRcKNGwhYrcnnE5WYaZVxUwm4XSSWNJ6M5LBAtJppJAZYHogM8DUkNuVxBnkzfk99eaOKIaQnEG+UZmUyyUkk4oF+JJsiU+qNkkIm17KalgWBFqHhv92yRAAKkN/C8kkP/+fhypWl+EAbDyQGQAAAAYCmQEAAGAgkBkAAAAGApkBAABgIJAZAAAABgKZAUAX1VJp+fLla6dOFefmqqVSq6sDQNsAmQFAF4WJidhf/MWRu+46+4MfCOfPt7o6ALQNkBkAdDHv841t2/bWr/3asY997OrBg62uDgBtA2QGAF1cD4fPfO1ro//yXx7/gz/IvPlmq6sDQNsAmQFAF4tTU2e//33vb/7m8XvvnXv99VZXB4C2ATIDgC6WLlw49/jj3ve+99jHPjb76qutrg4AbQNkBgBdlLLZxI9+dPDmm498+MPpXbvUfoUMACABMgOAMtVKpbK0xNa4rCwvp37xi0O33Xb4zjtn/s//aW3dAGgjIDMAKCPE44mnnoo++OCV4eHK0pIoiundu498+MOHP/Shiy5XtVJpdQUBaA8gMwAoU4jFwn/2Z+/8q391zGqdeeGF0tWrmTfe8N9338Gbb07+9KflQkEUxeXLl7P/9E9XRkaWL12C8ACgCGQGAGWqKyv58fEJh4MSZed/+MPLL78c/NznDr7vfcm///tyobCYTMafeOLwHXectNnmfb7qykqrqwyAGYHMAKDFcjp94ZlnxrZt891yy6kHHgj+x//ou+WWCz//eeHs2bN/9Ve+W245+tGPJn/2s+LsLAYFAKAIZAaAGlSWl7PvvHPma1/z3Xrrodtu2/8bv3H2+9+P/Nf/eviOO0729My+9trKtWutriMA5gUyA4AuFpPJxNNPn+zpOfHpT/vvu+/oRz5y9pFH8mfOVMvlVlcNAFMDmQFAL9WVleLcXGFy8vLLL1/1ehHEAKAHyAwAAAADUZCZ4vLyxVTq3Nmz2LBhw4YNm9p2MZUqLi83IjPQGGzYsGHDpme7mEo1IjN0cM0jAQAAbGZ0igVkBgAAQCNAZhoCM+wAAEAfkBkAAAAGApkBAABgIJAZAAAABgKZAQAAYCCQGQAAAAYCmQEAAGAgkBkAAAAGApkBAABgIJAZAAAABgKZAQAAYCCQGQAAAAYCmQEAAGAgkBkAAAAGApkBAABgIJAZAAAABgKZAQAAYCCQGQAAAAYCmQGdQFkQWl2FJlPMZGqWyUejkkOaeB34U23w5S0LgsQ0CZKLUxYEtRrKSwrJ5PprCOoCMgPaEiGZjPX10d8plyvhdPKf+ru6eD+Vj0ZZ4Xw0mh4clGzMGdF/RVEsZjL5aFS+SUpqbDqLpQcHs16v3MBIb6/EKEbW6yVf6e/uFqtVIZmkMyR27FA7VfHKFTWjWDG+2vloNNLbWy4URFEsC0KopycfifDXk75asXp8PfWYLzmPkExGenuz+/ernbYsCEGrlS8w+6tfhXp6FOsT376dvyb5aDTmcOBH1jcYyAwwC/lo1N/VpWcj/+jv6qIDy4IQtFh4j6khM+nBwVhfH+/mQjYbK8xcLe2P9fXxW8hm4x0xv/m7u/ORiNx9S74o4XRSBfg6yLWhmMn4u7tJG+QIyWSop6dcKPi7u8uFQqS3lzQg1NMjTE9LCme93oTTSY5VbpS/q4v5XGa7kEySO54dHs5HowmnM2K35yMRFgfIZUYiYCTGcpnxd3enBwY0ZCYXCAStVn9XV+yhhyQXnxXLer0SUYn09qYHBuTiURYE/5Yt+Ugk5nDQSSJ2e9BiUTwtMA7IDGgPeF2R/5d8N/svLzP5aHR2eDhit+ejUSGZ5NvsRKyvjzyjXAAkdWA7Uy6XxAn6u7oke1Iul+TwmMNBtVI8OfnuGvq6FlLQecjX09+kTLwTp5Khnp7ilSv5aDTe3y//Xl4t2Kcxh4PkkBeGhNNJTpn+5r+LLl2op+ddMV5z+qRYamLM56/KgpDauTNoteb8fv6Q2eHhoNWaePppOmHM4eCvUnpggAznr1LsoYeoMElsuVDgz0aqLA/mgHFAZkB7oC0zZUGI2O0sQc/LDN+GTblc8hY9RUJymZEEPWyPuKZMbCsLAgUW/E6SPT3iQT5x9RD1xjWplOIJyTRWYQqbxGp1dniY1I5CEzWZ4W3Per2xvr5cIECVoQLx7dtzgQClm0hmSEtIh/KRyA15Qo+HxSgxhyNit78rxt3dLEyh/cz2oNUa6+srXrnCji0LQtrjIeG54SKsaS19EdXnXbH0eNhpI729dCzLlPI1l+frgEFAZoC5oMhAkiITa8mMBEnSjFww/U2+htcDCnTYpyxpxrx2yuWiUCDhdFKCK+VyscCImvOU42J7hGSS/DsvHorRDIsndMoM/V0WhJjD4e/qSj33HHWAB63W9MAAfRrp7aXsWainh7x5xG4nhZBop5rMkHKw+CPlcvG9GvzfNWWG79ThgydJNwkzLbFjB8VSQas19dxz1D90w0XgZCblcgWtVv4rmMywyrOd8gyeWKm8e+pqFapjEJAZYC4oUJD/V7/MyD8K2WxBi4V61NWSZvQ3LzN8NwyfkeMPpE1IJv3d3cL09LsZf64y1KOj1jcjlxl5vEK+kslMPhqlbhh/d3d2//6I3U7dFUyl2DmFZJI6cla9rYrMSGzXTpqJdcqMnmiGv1yUkUs8/XTW65X3WsmjGeoBkkczoZ6eoMWiU2bKgnAtGLwyMjL3+uuzr712+eWXLw0OXvrlLy8NDFwaHLw0MJDevXvmhRdmX331WjC4cu2a4oMH1IDMAHOxfpnJer1Bi4UvSR4t4XSS91QcU0CFKalCwlCzg4RHLcvPywzVQcHZyWSG979MXVjSLNbXVy4UipkMFaOBZxTQyA+naIz9radvJuVyZb1eyRiHrNebcrkakBkaR0D9InzfzOzwMKtnLhBgV3523z5Kl/m7u1PPPccuFEkOL4GrOcxqNb59+7vDHDweqj91++uSmWpViMcnHI7A/ff777tvbNu2Yx/72LGtW49ZrezfoxbLUYvl2Mc+dvrLX57bu3dlYUHxdgNFIDPAXDQmM/y0iYTTGe/v5/+76tG4HH0xkwnZbOxU1HD2d3UFLZZ4fz8lkdSiGRpLzW/y8Uu05QIB5qZzgQAFHxL3zXp3dMoMlaSzsd5yMp86t1MuF9MV6vPI+f3k63XKDDNfsrHB3LPDw/H+fp0yw1RB0i/Ch0fUb0QjAvLRKA3m5r86aLXSNyrKDA25piHO9O3FTKaYybDQJ+3xJJxOyVBAPppZWVjIvPVW8qc/nfrbv40/8cS5Rx89+4MfTP73/z753e/GvvOdCYdj4qGHIt/61on/8B8O3HTTqQceyI6OVkslHY8zEEXIDDAbkiY/G22sITP5aJSFLzS4eXZ4mP4rJJPU9cL3zaTXuvGpzU65LMovsU/j/f18M5xOkufmzfAOizpvJMohiiL1cygORYvY7fye1THEazLDvo7vOiKZIZHzd3WxZBRLDZH3D1osbCR0YscOKkYdLdSEVxyAwF8ZcvQSp8yGTdNp+b6lcqGgJjNUpZoyQxQzmcSOHSGbjY8Xy4IQ3749YrdTJ408acbSg0GrtXjlSszhkPcMpT0eNhCOz+DxfTPVSqW8uLiysFC6erU4N1ecnV2amVm6cGExmVxMJBanpgoTE7OvvXbqC184fOed537wg6WLF+t7sjcxkBlgLuSZJfLsijJTFoSUyxW0WHKBAO2P9/dTTww/yUNRZqhDhZ80w38asdtnh4clMQo/b8bf3c3a1OTHV90oJWQ49y2KYsrlok54+m9ZECK9vZIRz7zM0LArXoTEG/tmKD8mrs2hYUOz6EC1ruya0QzpXz4SCfX0SEIZfoYm+5vGPtDgAkWZoerReARKZ/EXgd0jGtEQtFhoJHTa46EUGfVC8QPJ1GRGXIto1WRGO5rRSfn69eQ//MNRi+XU5z+fO3KkrmM3M5AZYC6yXq/iOisSmckFAv6urpDNlnK5WMYs4XSSwKQHB4MWCx95SGSmLAiU7o/Y7fzXMWGjUc6Snn/emTIHzQcBrLxk9iL1PZBopdmAY5mBpBBslJoEJjPFTIYkjSSWud2s1xu0WoMWC5ukWcxkcoEAiRwTDP6cVE+KGIIWS+q55yiu0ohmaAYl66RhMhO7cSA4M5+UJuF0UrQht4tdInYfSYYpMuNHM4uaMsMKNBbN6OTK//t/gfvvH9u2bfaVVzAyTSeQGdAezA4P8zJDsQULRKg/nA9iaO46eS5eAMjnsoFnNF6AJdmYL6YhvCw6ucGBiqJYp8yIoigkkxQeUUc3iQQfSOVrDWiO9PbmuQHNpFsUAZQFgTRGmJ5e1drpaTqEsn8kHjQIQtKiz0cidDhfEzWZoV6Q9MAAO2HIZtOQmbIg0IQbCjHpI+qyUlyFjGrCIhvJaGZRaXqmJO3Gr0PDy4xckPxbtjQgM1cPHgw+8MDRj3xk5v/+3wYO35xAZoCpoZ75VZ/CtcRpbBVfJtbXx8clZUFg6SZeAGJ9fdTJz0pS/wf1o5DkBC0W6mlvQGbSg4MRu52cr7imdlQ91stN9U+5XOR8yZmqyUzW6yXHSv0T1DdDMlkWhGImQ3NOSWPoEPqvfMaJfJDCalLuxiVqKFWlmDTLr611RqMq2FAufvAx/b06s6e7O/744+wj6h+K9/dTK4GN3BOSSepG8nd1UXm1pTAVoxl2iehwSYZNe3qs4rhBDXJHj576wheO3HXXxf/9v6srK3Udu2mBzIC2p+aCvpJuALVi+bXlT6iMfDVfGr/ECiuehFb3YsX4Q9TKa3wqh9r7Eit40WXF6jqt5Fj5MsbsK/Sfua61kGnAhf7yelBLwOqnWqksX7487/NdO3GiODtbKRbnDx0Kfvazh++446LLVS0WV/L5QiyWHx8vXb1aLZebVfMOAzIDAADKlAUh88YbJ3t6Qv/lv0w9+WR2dDS9e/fxT3ziyF13pd3u5XR6dmgo+ud/Hv7GN+Z9vs77NYpmAZkBAABlKktLmbfeOvGpTx246Sbfrbee7OmJfPvbY9u2nezpuTQ4mHr22ROf/vSB3/mdsW3bZvfsKefzra6vSYHMAACAMpQ0m3311eiDD459/OMH3//+Q7fffuJP/mTC4Zjo6xv7t//2wO/8zpG7745v3y6cPYuuGjUgMwAAoE61WhaE69Fo2u0+87WvHbn77oPve9+h2247ePPNB/71vw788R8nnnyyMDFRWV5udUXNC2QGAABqUa2u5PMLx4+f/+EPj3384++85z0Hb755/AtfSO/atZRKofNfG8gMAADoorqysjg9fWlw8Owjj0z/3d/ljh5dWVjAJM2aQGYAAEAv1UqlXCgsp9OlbLZSLLa6Ou3B5pWZSqUyPT3t8/lee+21Xbt2uTcWj8fz5ptvhsPhgmye8ya3pcPMgS3mtKVarc7PzyeTyWg0GgqFFhcX2UeTk5PjShhRprQ5lnnepDJz4cKFPXv2bPB7osiuXbsCgcDKOsaodJItHWYObDGC9duSy+Wi0ajRElKzTKFQCIVCFy9eLHd6186mk5lqtXry5El6Xvfu3RuNRhcWFjb+Ni8uLl64cMHn87344otut3vfvn3Xr1+v9ySdZIvYWebAlqbTrMfs4sWL5O4nJyez2ezy8nK1RZ0rmUwmFAqNj49PTEwsd/RAtU0nM/TC7N69e3JyslWPF8/8/Pzw8LDb7d6zZ8/S0lJdx3aSLWJnmQNbjIO3hY8edDI3NxcKhTLrW4SmWSwuLsZisfHx8Wg02sEJtM0lM8lkkoLuS5cutbou77KysvLGG2+43e63335b/1GdZIvYWebAFqNp+DEjimbqui+Xy+fOnRsfHz9//nyr62IUm0hmKpXKK6+84na7Y7FYq+siZWlpyePxuN3uCxcu6CnfSbaInWUObNkYlpaWXnrppboeM9NSKpXC4fD4+PjCwkKr62IIm0hmpqamKLlshsBfTjQadbvdb775pp7CnWSL2FnmwJYNoy5brl27Njs7u87xKcaRzWaTyWQDOcC2YBPJzIEDB9xud7TZi403i2KxSINE9XQGdpItYmeZA1s2jGKxuHv3brfbrae3aXp6enx83CRdMpuNTSQzr732mtvtNnNYSunmdDpds2Qn2SJ2ljmwZSPRb8vExMT4+HhnD+gyLZtIZqjhY+Yh6ocOHXK73fF4vGbJTrJF7CxzYMtGot8WGjpszuxfx7OJZIYG/re6FlqMjY253e7JycmaJTvJFrGzzOk8W8zsmvXbQnNlNqBKDZNOp8Ph8NWrV1tdkeYDmTERm9OXiZ1lTufZApnZGGjeaEf2HkFmTMTm9GViZ5nTebZAZjYGyAxkZiPYnL5M7CxzOs8WyMzGAJmBzGwEm9OXiZ1lTufZ0hkyUywWTTX5Xw5kZpPKTKFQmFtD5yGlUonKN7Bc+cb4MlbDubk57WWUWMlcLlfvt2yAzORyuY65NTrvSFPYGJkx4WPWLAqFQpgjkUg05bSQmc0lM4lEwufz0bIcPD6fT8OpzczMjIyM8OWHhobqegQN9WWlUmlyclJSQ7WT5HK50dFRvpjH4wmHw/q/zjiZKZVKY2NjkrszNjamIR6mvTWFQoHOzDMyMqJYN7op2ugxylCZUXvMFE+ywY9Zs4DM1AtkRko4HHZrovhUyZ0F7wF11tA4mcnlckNDQ4rVkxeemZnZSFvqMieXy8nln3koxeawaW/NzMyMmi2KdZubm1MrzNDjo42TGY3HTH6SjX/MmgVkpl4gM1KYzPh8vsnJSQrnJycn+fdH0nBmh3g8nmAwSIcEg8G6Xn7RMJnhXfPIyAgzKpFIyN/nUqnECvt8vpmZGTKf7Wy6LfrN4etGLXeygrWdPR6PJD9j2ltTKBT4S8qeqJmZGfakSerGZGZoaMiE0YzJH7OJiYmJiQk956yJQTJTqVTK5bKZe8IaBjIjJRwO+3w+eQamVCoxdxYMBtn+QqHAHJmkNZ1IJNSUSREjZIZ/n/WcmblgiWtgTkTuyhUxQmZYXCKpG39r+I/MfGuYLXJ/yhTI4/Hw+5nM1JVWUvvq5sqMEY+Znh77low0M0hmOhjIjBQNH8rC/NHRUbaTvTCKLz/zJnreBCNkpq4KiKLInIX8OjBLm9tkFvWZUyqVmGbI68YrirzCJrw1GteZrxvfF2hmman3MaM1/N1ut1xLDHrMIDMtBDJTB+w952WGtaMVOwZyuRx9OjIyUvP8RmRmqOTQ0FDNwnxtfT6f/FNmvuKnEpouM0zj1b7d5/NRgZmZGdpj5lvjXkPxU5brawuZaYvHDDLTQiAzdcAyLXzSTNtf6CnAaLovm5yc1N8w5MurOTL6VJLMUaTpMsM8r1rd5AXMfGtYNKM4dpG16PmEnmllpumP2YsvvkiPWc2v7iSZwZpmkBmxVCpR36zH4+Ff/pquig3ZrDktoOm+jDXwdc4UYZ5arQ7MOdY81cbLjLwVbOZbw7JMIyMj8rtDTxofNIsmlpmmP2YspbapZAYjzTa1zJRKpUQiwcb/SJ4q5svUOnWYL6s5kdCgJjMFH4lEgp+joDgqifkLtaoa4Zd1msN8Ex9K8shTmma+NfxIM5oswirJLJVcZN5A3sfVO6ux6TJj3GM2Pz/fLFsgMy0EMqOFZA6Nz+eTv9LslVB72lroy6jY0NCQ2myGkZER3gXXrKoRtug0hx/Oq12AyYyZb40oirlcjp/GSEOu6Ys8Ho+8zhrzZkZHR/WLTdNlhnJcJn/M6pIZiZCsB/0iBJmBzLjdbrfP55M/NCzRPDQ0JG81s1TbxvsyiVcaGhoaGxujR59vb/Id4GaWGZFL2Smelt0IJjOmvTWMubk5xRmabBSDpLCiEyfUZqeu3xZtmWmXx6yuNc0gM80FMqPF3NwcPSv82jPySRvMW1H2g5+VxjuRVsmMx+ORfzXvHdibYHKZYbLhXpN8utThcJgPC5jMmPbWEGGui0KSa3Ir5QYLhQKZLNnD29jcKU11yYz5HzP9QGaaC2RGL/wcwPCNfbAaK6DQ60d/1HQBBsmMpCeZEebWO6A9JpcZkes517jOvIM2560RuVGL/LNUKBRYv4Vb95or/NTIjV8FoI0eM/1AZpoLZKYOFOcAso/kHpDWczRidJaeE9Z8/+XmmF9mRFHk2+8ErYOpNkzWhLdGvLHbXG4gq6fO9aeZ7XqUaYNlhn/M6FSQGUUgM5CZVbRn/Inciu6S71V7CXma68vYJDiNr2bujP4bXmt4KvYNiGsDbZvrl8WGbg37jQY2iDasNKWRxzy3hk01VVMFtbVY1Kjp63maKzN6HjMaI8BOVfMxe/311/V8dV22YE2zFgKZqQ/97SyCOZSwAUvn6iymMZtSTWbUaispr8HG/6wZawHoLN/CW1PzOtclG/WWN2ikmcZjpiYzauZLymvQSQOaOxjITH0wX6ZTZli6Rs8ooKbLDKut4rw5+RohzFspNqL1tFsZGywzzBY9K5QQLbw1TZcZlmdr7gItOn190x8zkpnmPmaQmRYCmakD9sLoPE9dflk0QGa0145kvol/22mPYsu05hohPBssMzVn/Elo7a1hgZTacmrsUqvNRVWsns4aNl1mGnjMNJaTMegxa1OZoQvV7pm0zpQZxVddpy8bHR1Vc1XMl+nJmPNjnNYzoWE9tmishK82a0TNYfHlG145X63a65QZVmedoUzLbw1bbdqt0j8hvzW5XE7NmfJDihse0Kxhi/6lM5v7mF2/fr0xWxRds/llRnFNM8hMZ8oMFaNFMvgfm2K9MpI1zQi+cC6XC4fDdY0xJZouMyLX0uQnlvM/WixxzayZTzUht8XPV9fpyg2SGb4Pv1Qq8fdFMtWcYc5bE+Z+b42vBj+mmb/UpCXsx9lYYd4cPc3/BmzR4+NM9Zi1qcwojjSDzHSyzGig+FSpFa5rqKURMsNP95Gj6JrD6j9TrbO9XJctdZmjVjfFBSj5k5vw1vBTZOgHMfk7Jbk12ksAuNf9w8Yatuj8WbPmPmY6Z+xDZtoCyAJMGywAACAASURBVIyURCLBv/88GitHKRbW2U/AMMKXiaJYKpX4nyVmBINBNc1IJBLyWY2jo6M6NaYuW+oyR+6bJOtOqp3cnLeGj0UkFklKlkolycoFfHlDJVOnjzPPYwaZMRuQGWVKpRL9ODl7krQ7JGZmZthjNzMzo3NFdAkG+TKC1plm5tR8kyklReUnJyebsgywWrX1m1MoFNhNmZyc1KMW5r81bE0jqqH2rcnlcuw+hsPhevVSNExmCDM8Zoquua41zbSBzNQLZMZEGOrLNpiNHAKwAWzOW9OAzGww+mWmiUBm6gUyYyI2py/T2G8eNuetgcxsJJAZyMxGsDl9mcZ+87A5b00LZKZaXcnnly9dKi8u6ikOmWkLIDMmYnP6Mo395mFz3pqNl5ni7GzK5Zr48z+f27u33Oj0LEXX3MQ1zQxCcU0zyAxkpslsTl+msd88bM5bs8EyU61U5vbtO3bPPb5bbz31+c9fGRmpqTQtGWm2kUBmIDNNZnP6Mo395mFz3poNlpnlS5fOfv/7h26//dQDDxy/995TDzxw2eNZ0Rx7BplpCyAzJmJz+jKN/eZhc96ajZSZ8vXryZ/+9NDttwf++I8vezzx/v6j/+bfnPjUp9IvvFCan1c7CjLTFmwimRkYGHC73ZVKpSVV0sOhQ4fcbvfU1BS/s+NtETvLHNjSANVK5fKrrx6+4w7vb/3W+Be/OPf664WJifj27WPbto1/4Qv5U6fUDlS0RdE1h0Kh8fFxM/vrixcvYk2zBo9sCYrvDC3Jt7Cw0JIq6eGNN95wu92XL1/md3a8LWJnmQNb6qVaqVw7efL4ffe9/S/+xdi2bZFvf/vCM8+U8/l5n2/C4Tj/wx8uJZNqxyraouiao9Ho+Pj48vKyUWasm3g8Pj4+ns/n+Z2QmTaTmQMHDrjd7mg02pIq1aRYLO7atcvtdkvehI63Rewsc2BLvZTm56MPPvjOe95z8Hd/N/HjH8f+4i+mnnxyJZcrXrmSP3OmeOVKdWVF8cBisbh792632720tMTvV3TN09PTZv4J5Eqlcvr06VAotHKjsZCZNpOZqakpt9u9d+9ec96zaDTqdrvffPNNyf6Ot0XsLHNgS73kT58+8alPeX/7t2Pf+U4+FIr95V+efeSRpYsXax6oZouia56fn5+amhIEoZlVbx6ZTGZ8fPz8+fOS/ZCZNpOZSqXyyiuvuN3uWCzWklppsLS0RGsIJmX5gY63Rewsc2BLvSxOT5//678++4MfXI9EirOz5x577Exvb/7UKVHTty4tLb300kuKtrSda15ZWQmHw+Pj4/L8ZNvZosgmkhlRFKenp91u965duy5durTxtVJjZWXlzTffdLvdb7/9tvzTzWCL2FnmwJa6qCwvL6fTxbm5aqlUXlxM/uxngX//76/s26chM9q21HTNZhugce7cOcVQRoTMtKPMiKJ48uRJt9u9e/fuyclJM9y8+fn54eFht9u9Z88eSYqZ2CS2iJ1lDmxpmPQvfzl2772pX/yiqrK6M2/LotKaNNquWRCEcDhsqk6aq1evRqPRFaUuKMhMW8pMtVo9fvw4Fdi7d+/ExMTCwsLGt26WlpYuXLjg8/noMdq7d69khAljk9gidpY5sKVh5vbtO37fffEnnijdOLRXvy3arvny5cs0uHlycjKbzS4vL2+wE69Wq6VSaWFhgdd7tesJmWlLmSGSyeSePXvcJmDXrl2BQKDmr3JtEls6zBzY0gCDf/VXw3ffPXT//budzsZsqemac7lcJBIZ5+CDG1rCUk6zyjDkvUoN2NIWbFKZEUWxUqlMTU0dOHDgtddeoyGeG4nH43njjTdCodD169dhSwebA1vqZaC/f5/VuvfjHx/44Q8bs0WPa65Wq1evXp2eno5Go6FQaINl5syZM+fOndPzk3SQmfaWmXYBtpiWTjLHPLbkz5w589WvnviTP7n6zjuNnaEzXDPRGbZAZswObDEtnWSOeWxZTCYnHn742D33XH7pJe0xzWp0hmsmOsMWyIzZgS2mpZPMMY8tpWw2/sQThz/0oQvPPFPR9+NmEjrDNROdYQtkxuzAFtPSSeaYx5ZqqXThH//x8J13nnv00eKNi5XppDNcM9EZtkBmzA5sMS2dZI6pbLn88svH7rnnzNe+lj99uoHDO8M1E51hC2TG7MAW09JJ5pjKluzbb5/49KcD99+fVZrkX5POcM1EZ9gCmTE7sMW0dJI5prIlf/r0abv9yF13zTz/vNpaABp0hmsmOsMWyIzZgS2mpZPMMZUty5cvx//H/zj4/veffeSR5frXUusM10x0hi2dLDMAgHbkxeeff/kb3xi56aa9W7cObN/e6uq0HsiMGWn1UwEAWBee731v+EMf+tX73//Sgw+6X3ih1dVpMZAZAABoMtfD4TNf//rBm28+/8QTxStXWl0dsC4gMwAA01Gan0/86EcHf+/3xr/4xWuBQKurA9YFZAYAYDqqlcrc66+P3XvvMav10u7dleXlVtcINA5kBgBgRq5Ho+E/+zPfrbee/f73l1KpVlcHNA5kBgBgRsrXr1945pnDd955sqfn6v79VZP9sjLQD2SmEXK53OjoqNvt9ng84XC41dVZL3Nzc8FgsNW1aBpjY2NDQ0Nut3toaCiRSLS6Os2BGeXxeMbGxjR+1KtdSCQSo6Oj2mWuer0ne3oO33FH8ic/kfyYZmtJ7toVffRRtiVffLGxxaQ3CZCZRhgZGRkbGxNFMZfLeTwePT9PZE5KpdLMzMzIyEjNF76N8Pl8uVxOFMW5uTm3201/tzujo6NkSKFQYI9f+0K3puZQ3aWZmXOPP+774AdPf+Ur106cMI8rjz722NTPf34tFrs2OXltclJATk8TyEzd5HI5t9vNmpPBYNDn87W2Sg1DYdnQ0FAnyQzP6OhoB4SbEsLhcFvfr1wuNzQ0NDk5WVNmqisrc3v3+v/oj45ZrTPPP1/O5zesktpEH3tsZs8e88ieyYHM1E0ikRgZGWH/nZmZGRoaamF91k+7uy0NRkZGOkxmSqVSWxtF9Z+ZmaGApubEQ+HcuYmHHz70wQ9G/9t/K0xMbEwlawKZqQvITN1InDK9LS2sz/rpVJnppKSZuBZ6tnt34MjIyOTkpLh2d2rKTFkQZtzuY1u3Hr/33ssvvWSSkc3Rxx479ZWvRB999OxTT12LxVpdHbMDmakbyExbQK3m9s1nyimVSnNzc4lEYmhoqE27A4PBIOtV0ikzoiguBAKhL3/54PveF3v4YSEeN7iOusgcPky9MjN79hy75575DhpBYwSQmbqBzLQFY2NjIyMjHTAiSw4pTatr0Qg0PlNCTckszc9P/+Qnhz/0oeOf+MTsq6+WBWFjaquTqWefPfvUU0igaQCZqRsamsX+K+mqaUc6T2bGxsY8Hk9HaozYES0bsZ5oplouzx8+HPzsZ72//dsTfX0mCWgYM0ND0UcfhcxoAJmpm0Kh4Ha7C4UC/XdsbKzdR5d2mMyQxnRMl4woihK9DIfDbRrN8OiXGVEUi5lM4kc/OnT77cfvvXf2lVcqS0tGV0+D8uIi/9/oY49h3ow2kJlGoITM3NwcDcpsX49WKBRIY4aGhsLhcJtm/HnIefl8vjBHqyu1Xubm5mgEMD1yHo9nZmam1ZVaL3XJTLVSuXrwYPCzn/Xdcsvkd7+72NJZt9cmJ0/Z7ZlDh6hvJtDTs5zJtLA+5gcy0wilUom8s8/na2vXTDLDaGtbCIlFnSEzpVJpcnLS5/ONjo6OjY11wG0S1+6U/vLLly9PPfnkodtvD/y7f3dl377qyopxddOmvLh4+a23zj71VPTRR6d+/nNoTE0gMwCANqC6spIdHT35mc/4br118nvfa21AA+oCMtM41XK5ND+fHx9fnJ6udmhvMwDmYTmdjj/xhO+DH/T/0R/NvvKK2YacATUgM41QXVkRzp+fffXV1LPPhr70pdjDD+fGxirFYqvrBUAnU11Zyb799gmb7eDv/m7kW9/Kj49Xy+VWVwrUBjJTN9WVlcLk5OR3v3v4jjuOfvSj/j/8Q9+tt4a/8Y3csWOtHQADQMdTnJtL/OhHh37/94/cfXfixz8udkQ3VccDmamParlciMXOPf74kbvvPnT77d73vjf64IOnHnjgyIc/HPnWtxaOH0dMA4BxVMvlaydOnP7TP/X+5m8G7r//yr59kuHFwIRAZuqgWi4vJhLn//qvj1mth++44/gf/MHBm29O/vSn6V27/H/4h4c++MHYX/7l9UgEgTwAxrGSz1966SXKIkS+9a1rwSB6Rk0OZEYv1UplMZlMPPXU0Y98xPeBD4S+9KXg5z7nu/XWC//4j0sXLpz/n//z8O///uE770w89dTy5cuYqwWAUVSrSxcvJn784yN3333kwx+e+pu/WZyaQtvOzEBm9FGtLl+6dOGZZ8a2bTt4881nvv71iy7XqQceoGhmJZ+/dvLkma9//cBNN5164IHckSN46AEwjmqplB8fD3/zm74PfODY1q2JJ59cnJpq4UwaoA1kRhcr+fwlj+f4Jz/p+73fG//iF7Nvv515662TNtuBm26a/ru/W1lYKBcKc/v2hb70pdNf/nLu6FFE8QAYSmVpKfPmm6f+03/yvve9x+65J/Hkk4VYDO+dOYHM6OJ6JHLmq19959d//djWrZcGBlYWFq6MjBz/5CcpmikXCmK1WsxkcmNjuaNHS1evImkGgNGs5HJzr79+6vOf991yyzGrNfad71zdv38ll6tWKq2uGrgByIwurp06ddpuP/rRj079r/9FYygveTxHLZZDt92WevbZ1TZUtVotlSrLy3jKAdgIqtXS/PyV4eHTf/qnvg98wHfrrcHPfjb5k5/kjh0rZbPIoZkHyIwuSvPz84cPz+3btzg9XS2Xq5XKzAsvHL7jjsN33nnx+edbXTsANi8r+fz8oUOx73736Ec+8s573nPo9tuDn/tc8mc/uxYMruTzyCuYAciMLqqVSmV5ubK0RJFKZXk59YtfHLrtNsgMAC2nsrRUmJhIPfvs+H/+z0fuuuvg+953+M47z/T2Xty583okgok1LQcy0wgrCwvJv/973y23HL7zzpkXXkCWDIDWUq1UVhYWFo4fTz333Gm7/cjdd/tuueXI3XdHvv3twuQkYprWAplphOLs7Pm/+ZsDN9109KMfvTQw0OrqAABEcU1srp04kXj66VOf/zwl0K6dOAGZaS2QmUZYunDh3OOP00jK2VdfbXV1AADvUi2Xly9fvnrw4MXnn8+Ojpbm51tdo80OZKYRFqenzz7yiPe3fmts27bZ9v+5XAA6j+rKysrCQlkQMFe65UBmGkGIxye/9739v/Ebx++9d27v3lZXBwAAzAtkphGuR6ORb37znV//9eOf/GTmjTdaXR0AADAvkJlGWAgETvb0vP3P//nxe++9un9/q6sDAADmBTLTCFcPHBjbtu2f/tk/O/6JT8wfOtTq6gAAgHmBzDRCPhQ609v7TldX5JvfLMRira4OAACYF8hMI5Tm57Nvvz31t3979cCBlYWFVlcHAADMC2SmEarl8ko+v3z5cvn6dQyXBAAADSAzAAAADAQyAwAAwEAgMwAAAAwEMgMAAMBAWiMzQjJZzGQaO1YNyQmFZLIsCEacGbSKYiYjuaedfWvI2KzXm/V62X9FUYxv3y5fclhIJoVkst6vyHq9KZdLo0Bix458NFrXOYuZjM6a5KNRMq1esl5vvbXij63rsUnt3Nnwd2mgfZXy0WgDXyokk2mPR2056nw0mtq5k/80tXNnPhKRlywLQmLHDklJYXq63vowWiAzZUEIWiz1Ooj04KDG+yAkkyGbjd8T6+tTu0+Sj4qZDN1U2uTiFLRYGnsZtNG2SFIy1ten9pF8Y5/G+vr4/2a9XsXy6cHB9Rjo7+qSV0mxpJBMSm4Kf+XVNvaopFyu2eFh/vCI3a72Xe1OWRBCPT3FK1foetJ/y4VCPhqN9fXJXUlixw52cWIOR6yvj9/U7u/qo6XumPzd3emBAbXHRv6KUT1DNlu5UFA8Ib8lnM6I3Z6PRPidVNK/ZYu/q0uyiWs/7BRzONKDg40t7x9zOJhvLQtC1uvlL5fEmZYFwb9li5BINPBFGpQFIfSZz4RstvL164oF0h4PM1B+N+X1ZKcNbt2aD4cVzxnfvj3hdLKLVsxk1EzLHjgQ375dmJ5mNyXS2zu7b5/8ldRJC2Qm4XTKHyB+kzuOfDQatFiCFouacqRcLtrYbQhaLBG7nX/NyoKwesns9tnhYbpY9LaEbDZ2FL+flMDf1ZVyuZrrmrUtkjxSIZstaLFIdlJJSZXo2vLnkahOwumUG5JwOtVkTA96ZKYsCBG7nbagxcLaccwcf1cXf794k9l1lrQP6BpSs6BZkaupyAUC8udNsXVSzGRCPT1itUrtJH93N++76aYrfoWGzJQFIWi1pp57Tk1jFGUmsWNHrK8v3t/PezSGxGMqP9hKlSHBW4/MCMkkfTvzDNn9++k8CaeTLlfQaiXfqihyki320EMN/4yN9lUSb5SZwJYt+XCYV+JIby8pJTPqXb9ntcYeekgiSMVMJu3x+Lu7E08/vfp6Vquzv/pV0Grl2xDFK1fo2+Pbt2f377/BnVqtN7jT/fvrsn2jZSbr9TLXoBMhmaR4IhcIqIVBIZuNgtB378SaljD5FZJJiQLF+/v5CKCYyVDdeJkJWix8sabITE2LlBt9N+5UPHM+GtWWGcUDVxvIjaJHZkjhWAFJ6Ekn4esmCeAo4gxaLLlAgDWmYn191H6n+LiBlJGZYaEnPbSrjiCTCfX03NAmGxgQRTGxYwc1pIJWaz4S8Xd3816AvyO879Bw9GVBiPT2JpxOtRBT8WonduwIWizlQoFimtl9+7RtTHs8GrEUz/pl5t1WZm/v7L59Wa831NMjTE8zt0thDX/O1eBAKa20HhI7dgSt1vL16xTTzO7bx39p9sCBmMMRstmo7Zvdv9+/ZYvk93lZQEaKKBEhyUaGh3p6mKL4u7urlUrkq1/lG510HpHc4Nat0m98+OH1XIcNlRnSGObu5Zu8mUYemXmolMsVsdslj3guEIjY7fQ3u2ohm41dRIlvJW87OzxMjoy9hBQPSc4cstma21KuaREvcszRhGw2yU5ytezloW12eNiE0Uwxk/F3dTE1LQuCv6tLchO1ZSbr9VIYxC5FPhrltSqtnldsU0hmUi6Xv7ubcoPUsmESwrJn5ETykUjK5aLWsYbMxBwOXjwkaavZ4WE6lp6KYibj7+6md5NvzNLfEi9PGsOSOUIyGbRaE08/zYqRVNSMEhTb6RG7vYlJs5zfH+ntze7fL3JxQ8zhyN64DG58+/aQzaaYM1xPHBO0WlmqSkgmg1u38leJWlSU4MpHIpTaUotmSGaYJBQzGb5PJXfiBL10+WiUV1AKj4Jbt4qclgTWZCbt8cQcDvoooBTVpX/5y3rN31CZoUYQtbjpesX6+qh9yvt9BjX2yfWzUQMpl4tatawYn0SinJvER9M7xpqHIZst3t8vSYXJe4xoj9rLUJfhdVlEDpTXgKDFIjEqZLORUybllr6N3JUxWmZIM/g9q6kAjqzXKwlfQjabpJdFW2bossT7+8W1rFHEbmdRZry/nwxXC/LaFGqQkXURu71cKER6e/1dXZTcmB0epgeJ3qN4fz9FEqIoyr15eu2nxFcd9BqSpNlq0FCtUtMqFwhQLo7iJHYSidsqZjKR3t6I3U4VS+3cSYE+2898IjuKOpmZv343L7rWTqdAh+mfJNRoQGZiDoeiyJGKkFRLogq1fik+rtKP8lWqViVXiQh95jPpgQGWNJPkwYJWK0kCyUzu+HGmLoEtW4pzc3SSwJYtuePHqSEikZnZvXtTLhdvL8kMhTKxhx5iMiMJa/hsnn5a0DfD5KQsCJTComeaT92UBYGcL5+XZ68H8630/NHf9JEemaEzSxwuuUI+cKEOA0UT2H6NTnXJyfVbxK5DWRBIA9g7H7Hb6W+W/pJEYBTc8CbQV/DpRO2t3rtJjQZeV0jt+DJyzZDon6hDZliTnNSFUgq0k7KjlA6qt/6mha6AkEyyR4i6qRJOJ7VIEk4nn7aNb9/OlFs7mtEjM/JPyVWRjPFuKz04SF047N3hNaAsCKmdO8lfFzMZehHSg4MRuz27f38+Gs0FApHe3pTLRWdmw8B4c+SsJ5rJer3x/n7WD0F+U0gmWXwjroVifPzE49+yhfarSZe8F+fdq7Q2MiLmcDAh4a8SqYJ/y5bIV75Csanc10uSZsW5Of+WLTSaIOZwUBYud+IEC3TkMlOtVNIeD98zFNiyRUgk4tu3r7ba2zeaIWdHbWfm16gpQdEM9UCwrBofW0gcUzGToUiIGv56ZIbVgfawxCV7CflwipIJLOqSbExmJJlujWSgfovYf4MWCxubELHbE06nPCHOHyKHfQWrgKSnXb7pv5tEPhqltjZTGur64i1Vk5n04GDNV5TFjvH+ftIhedaUkEhsu0MPJ40CYAlSkQtiqGuBCpMIsZd//UkzemBYD4FkYwlMGvsnTUrLNCDPDeCkbpvYWs9Qwumk0XSSexrq6ZFH3jf46PplppjJxLdvD1qtzBC+b4b6vcqFAmlMdv9+f3e3JIxYfYnWohmdrTchmVS+SmsyI7lKMYcj3t+fcrkivb3pgQHqSpEcK0mahT7zGeqWX015VaupnTvj/f2siSAZ1EAnjHz1q3zMVK1U4tu35/x+PmnWftEMPbsS78luHnumUy6XvFdc3v4l+Oa/uNYo5jc2zKaYySScTj4fRamnG17Cvj7aQ3GDv6tL0Rc3kDTTbxGDxghQ/VebeLJ8lKJTfrddKZNY/tOmQNEhDSSjhnbEbpeMPG5KNMNGZwQtFirQrEymOZG/LKQuxUyG+vlZkof2kNj7u7qob4bP9vBXm7qX+ZdOIelarZIDDfX0sAZZvL+f5bcTTidplaLe19QA1vvIXgr6rpzfz8qQO1NLVTUgM7O/+hXJBp95y0ciTGZEUUzt3Dk7PDw7PEzpLLXedRbNrAe5zBAUedDtI83zb9kiyd1RV5xISXirVaxUmKjIhUdUiWbEtd7+7P791AN0Q+izJjMSoaXOKlPLDMFG8ZYFIWSzscCfd/dyNJyyRGYkkkC6Iq4FK7zzYqLCzsyefvLFNZNm60FbZig9ErHbaSYae8IoVtCQCo2+GTq8WXEMEe/vZ4l48lOzw8OSaUzUI8UfJRnJTWMEeJ8llxnKapKDE5Welg6TGSGZjPf3UwxHKUHWwog5HEGLhR/HxQbo0381ZEYysVGSNCMBYJ/SwGiRxqP39rKSNV5VTQ2g7iUmdZKkU1b9t2h5596AzFDKjjrP81xHOi8zkqZ6S2QmsWOHpFYBdZlhsUsuECCdoNFrND6NTcpRkxlRFHMnTjCjFGVGcgX4HjX9bLTMSAYd8ZOQmyUzatGMuDbTgjlWcnZpbiJCvL+fb4Y3MZqpyyJRFCWpLcmgADVVoMur9hWSiahsmx0elsgAj8aSDfR1TPPy3ESW2NpoY3FtmADzblSMP49ch+QyI4oijaMjizpeZkRRjPT2xvv7aXo/TdWk/dS0lw8wpeSMqJk0k5BWnzdD/TTMKecCAZIoPppRbO5oawAtakC6yHJ9pJGrIqdSmaDVqmcIQGrnTrU0cv7Gcb3krNODg2wsSdBq5SMqv6wtL0marQc1mSEk82bUkmbsJDSkgj0hfMZM1JQZVqCjohnq2FD03SxpphyJrzuakZQUuWiGBp5RI4t3qTX7ZtaDtszQkAEqwKpNSTP5misM6inR+RWM1bddhZDNpvbekubR35TOYtJC47bZrWSj6SirJplyxHftsDPLq0T66u/qYiMv+E87T2ZEGhtitfq7ulLPPcfvofGH1DdDjweFudRgaorMyKf+8e2z1VdVaS66hgZQV2iop4eiFub+0h4PjX5mjlJCLhDQOdLMv2WL2kkk3pYlzVjPpSSWUotaDI1mCD0yozGNn8+YiTJ9lXf2KIwXaOtoRjLPg23Uma/VRNItM5JP+Xcsf+NYYb5vJq80zkrRc8mH8DaGmkX0KtK4Z8kYPPYRiQ2V51dvkwQ6al/Br6dUzGSYe1KsjJqx1NND1RCSSblUUJDEriqJGaX4+fNTU0By0+UyQylEWh2EItTY2jiC9NpoAsV6timU5GF5SHpuSWPIuZPS5Pz+YiaTCwTYAmikxPIGnOIt1pAZxcLklCWtfglqGkCVp1Fe1PdDLTzJaCuWDEx7PGzKgWQKjtpXUNinZg6FRDckM25MT0mQyAm5/pTLpfEV+qlLZuTdkPlwmBoB+UhEe82C9MCAmsywDrBQTw+7vCQzdGX8W7akf/lL/i2jLzX7KgByQjbb6rC/vj6NLoeaMpPWHLZEPosa+0zb6G+Ntp7Ec7FpNDrXItNGzSLqQyIZYAN+JLmvhNPJ4gZaDodtkhlFil+R9XolF0cjPKLZKnL4ZGOMm+QvKaO4n52ccpjyb5fIDN0svljHywwNN+LvJj3nfKyf9Xolob9aXlStu74umWFBpLxBxsPmzUigurEy1OaQxEOUOmNfx8IpNuKZ0FAyyXQQHiGZ5NeOpOUg2cqkciQyQyvEpGWD4hqDzZtR/FRPNJP1ehUXjpNDTZZ3x6mvLa+ZPXAgzWZcrJ2Klxm1TaPmirReZnSi3UOgc92XsiDwjwjFAfyTLUHio+UrP64HPctU0zdqP9a8Z5H46/UsZEsoBnkMfpRqY+dXS8fJ16+Vr80suXpNvDUAgCbSNjIDAACgHYHMAAAAMBDIDAAAAAOBzAAAADAQyAwAAAADgcwAAAAwEMgMAAAAA4HMAAAAMBDIDAAAAAOBzAAAADAQyAwAAAADgcwAAAAwEMgMAAAAA4HMAAAAMBDIDAAAAAOBzAAAADAQyAwAAAADgcwAAAAwEMgMAAAAA4HMAAAAMBDIDAAA/KrMgAAAALNJREFUAAOBzAAAADAQyAwAAAADaVxmLqZSdDA2bNiwYcOmsV1MpRqRmeLyMpQGGzZs2LBpbxdTqeLyciMyAwAAADQLyAwAAAADgcwAAAAwEMgMAAAAA4HMAAAAMBDIDAAAAAOBzAAAADAQyAwAAAADgcwAAAAwEMgMAAAAA4HMAAAAMBDIDAAAAAOBzAAAADAQyAwAAAADgcwAAAAwEMgMAAAAA4HMAAAAMBDIDAAAAAP5/0TgIlfbamkSAAAAAElFTkSuQmCC" alt="" />
数组是一个值的集合,每个值都有一个索引号,从0开始,每个索引都有一个相应的值,根据需要添加更多数值。
任务
编辑器中定义数组myarr,并赋值3个学生的成绩, 验证结果窗口中是否是80,60,99。
?不会了怎么办
代码:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>什么是数组</title> <script type="text/javascript"> var myarr=new Array(); //定义数组 myarr[0]=80; myarr[1]=60; myarr[2]=99; document.write("第一个人的成绩是:"+myarr[0]+";<br>"); document.write("第二个人的成绩是:"+myarr[1]+";<br>"); document.write("第三个人的成绩是:"+myarr[2]+";<br>"); </script> </head> <body> </html>
什么是数组
3-2 组团,并给团取个名(如何创建数组)
使用数组之前首先要创建,而且需要把数组本身赋至一个变量。好比我们出游,要组团,并给团定个名字“云南之旅”。
创建数组语法:
var myarray=new Array();
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAY4AAADkCAIAAAAAflSjAAAgAElEQVR4nO2de3wTVfr/f19319VVVrmLsshd8AK03kAWFS8EFRC5CEG8sKJIuIjiZcvu+lVfq9V111UpLLj71dbLVoVyaUsbWnpN2/Sapk0vaUlbGpo2bdK0adOkSdPM748nPRxmJtO0hKZjn/frvPJKJpPJmZlzPvM8z3nmzP9jEARBhj3/L9gVQBAE6R+UKgRBRABKFYIgIgClCkEQEYBShSCICECpQhBEBKBUIQgiAlCqEAQRAShVCIKIAJQqBEFEAEoVgiAiAKUKQRARgFKFIIgIQKlCEEQEoFQhCCICUKoQBBEBKFUIgogAlCoEQUQAShWCICIApQpBEBGAUoUgiAhAqUIQRASgVCEIIgJQqhAEEQEoVQiCiACUKgRBRABKFYIgIgClCkEQEYBShSCICECpQhBEBKBUIQgiAlCqEAQRAShVCIKIAJQqBEFEAEoVgiAiAKUKQRARgFKFIIgIQKlCEEQEoFQhCCICUKoQBBEBKFUIgogAlCoEQUQAShWCICIApQpBEBGAUoUgiAhAqUIQRASgVCEIIgJQqhAEEQEoVQiCiACUKuSy4DSbdWFhxqNHfa1giIoyREX1ux3hjQQKk1xuksv7Xc1tt1fJZFaVSng1p9lMf7SqVIaoKLfdTi+0abWGqCjWmgL/q9u3z6bVCq8Dbxx6vW7fPsbjgfew3KpSVWza5DSZeH9bsWmTKTHRn5oEkaGTKrfdzjpb/uM0m60q1YB+7rbbuafWaTZbFApf27EoFH42HdYfcTc40J21abWDPjjDk7rwcI1Eog4J0UdE8K6gCwvThYUxDOM0m21aLSnQu8jHKplMHxFBfxvwqlpVKnVIiDokxFFf3+/KhqioKpmMXmJRKIxHjxqPHoU9gk1Zi4rICnXh4RVSKWgHQR8RoZFIWAsF0O3bpwsLE1hft28faLpNq1WHhjIej9tur9i0Ca4HhqgoX39nUSjUoaFk341Hj6pDQ2EvWMX/2l4Ohk6qTHJ5hVTKwKmNifFVeH9rjIlRh4T405lNcjm0ZptWqw4JgYWGqCi4Zprkcl/bcZrN6pAQUgGbVutnDQ1RUdxtwh/5f83USCR14eH9rmmIioL+IFD8+cfLDXR+m1ZrUShotYL+DO9JbY1Hj9L9QRcW5tDrye5oJJIKqRTew5vAVtVpNmskEth4lUzG2zagLfnqvaRiIFgsPXWazerQUItCQW/Qbbdrli/3ZVSCKrFKlUwG9eQ54x4P06dQjvp6eOPu6qrasYN8W7Vjhz4igldrvHLm8cC+G48erZLJbJWV9PXDJJeD/F3Ckb5Uhk6q6sLD4dyQU8s9GURcWEpRIZVqJBIBgTPGxEBrIBc9IlUWhUIjkUDrqQsPZ10SCfqICFBSwBgTw20ZdA0JFVIp13Coksl4OxVtL9AFrrFWlYr7Fa13urAw2sRgFdDHgZ2VywB0ftIPabXilSoCCByrV9MOIP3zgAAOnUYicZrNDr1eHRrKawPCWQMZIsUQFQVmu4CLyjVPQDvAkPFltqhDQ4nwCRcw4oiCmORyqCrIivHoUVAfkMu68HD6t3CcLQqFZvlyd1cXwzD6Awfgf7nmG9lmAA/+QBkiqXLb7eqQENALXVgYr/VE20EWhYIlEND5BQr0DbfdXiGVQmMCY0cjkZDWr5FIeEMSYFJBy7OqVGD3cXsFXUOGYYwxMfqICOiHtFw69HpolFxzTOD67KvQx8qXygso6RADnZ9lnjj0eo1Eoo+IEJAqWAeMYnqnWFYVXD9YcnYpVSXnnblYVXlXJl/BVQGcJmGpoi8t3guYx1OxaVNdeDjrWkVLFb1BOjjACmuAswbax2oG5KOjvt549Ch93dVIJHAtAePOkpnJ9ImRtahopEuVRaEgNos/UkXjdbP9AKIeYJtAYyIf3XY7CUmwr3IMUxceDv4XKB1IT79SpQ4JoYUDWgPTF4ag+1uFVOpLROijwfunvlbm4usADhnESOG6UQ69HmI6vFIFhhgIAcvwpGNV+oiIKpmMZWkODodeD12apXqgVnXh4by7UCWTEfuL/FBYquivwLMDk4oV4QYvGLQAzLcLy0NDjUeOwEdwxHRhYfBzsPXIGygkRAgfHXq9ZvlyWn1I2Et/4IBGIjEeOQJOHywc6Q5glUxGPIIBSRWYRcaYGIde78vxIW0XQlq8xabVwgWH7gNVMplDr7eqVOACMH1+n9tu91OqWCaPLiwMDDRWB4CK0UssCgX0TF6p0kdE8BoOur6orUDxfRIuO6yrN9fm5ZUqEDhfobrL4QDCGQePG5ZYFApywCFiUCGVkm8FDjtUieuVgwPBK1WwPvfQseLWDr2+ascOrh9g02orNm1Sh4QYjxxh6anbbq/asQMkuEIqhb8GsaNj6kT7wBaDAKhGIgH5G9FhdejhpEP6E6siEO0Q7qUs7YO2qA4JIYPEUAc6UEViTGB7kwItw59YFa9UsWJeZC/oHxJnh/EhVSxPhIyRgbnnS6+h5V2+kbJ+cdvtxH2jwyLkUPNKFcsphl3wdaLJz8m4m/8FRnjrwsOhJ9OHiOuNEjcKDiZtX1gUCvoaydsyYWu8UsV4PHDhpIWGliq33Q5jNVUyma9BSRCUCqnUVlkJS6wqlWb5clNiIomva5Yv10dE6PrGJSEg5Q3zZ2bSZw1+SLY8ch1AOFK0VJE4DsgWvPe66xSsUTkuNq1WI5GAcUQWQhgeHEDwxaD/gHiR1ciWQQjcdntdeDhpr7ARVrCJVUNeqbIoFOBy0vWkpYoEbsiveB1AWq3oSISfxZ+UpcsE1yEiS3xZVXTIhmU30VsDOSbL+zUwufIBiqCPiGDZIyypAsBIZJ1Kgb1jGEYdGkq0g+EEyL0jmH1pBLQhCW4XRJ3A4us3zwvMLnVIiCkxEVJDIEOCyAokWIHUQhyKgbGLi91Pwzff0No0cqUKrpDQ7WGJQ68nsQa6c3IzoaA52vgy38iVhxYL4tZ5x0FCQpi+yJEhKgr0gk5loLcMqsdbMda+kI+8UkVWoxMFwUZjODrFCMaqQK1Y2+m3cI/VEDNQqXLo9WR9GKWiIy90HgCUS6web3PilSqmL5nTV/KEri+vQkCqeKKZfcmZ6tBQckUhAgEN29cQIduZOHIEhvlIqqchKqouPJyrKRWbNkGygv7AATrJC0YAnSYTdBm33T5ypYqEqI0xMdyhehIo5QaewCzyJVWQdsAKr8J/MQzj0OtNcjmdJAVviH/HGteHaDp9HfNTqny5JzAUQGw9sjWIgrGSHnkL8VvpCqip0Uaw+3TUOCPXLA0K0HXJqQF1BmvIl1Sp+3LQIEJ0WaXKV50FomBOs9lXfVhJ+Vyp4nUA4SPEqsHYYQkEt6fANZi3pzBUwp364qEesk1okE6Tic7ncprNmuXLYczH29cqK2EfWb6zPiLi5y9VoPfQowRiEKzAE6wJdpONLxuT1UshUYDEFOBb+qRCZUheFSuOC3EoY0wMnHKHXu+nVPEMRfdRJZNVSKXetLqLtyYQ/r/QaPgEWkRSBSYhFJK74GsEsEIqNURFgWZxXbPLJE+sfxGQKqZPrbwt+ehR2hWl5WlAUsUwDKQswBuuLXNRDQWz1SFyB8EQoi/gFcJPIEQFqkR7f3UffWQ8epQOWRiPHoURQ7p4o7Q/b6kCdJxRPxjag6NAujTBJJd7A5N9g3eswrLDdX0DGb56PmwW+g8oBWlqEBFT96VugdUjoCakkr4cQLJZGLtk+i56rGPC9RMZH3lJ9D+a5HJaHGmtHCYpoNCZabuA6fP6LQoFPRBMjgmcF11YWF14uEBe1eULw/UrVSAEkJsOQqyRSBz19eDHkeD3QKXKn6/8XIF1fwyMBtL/rj9wwBv9FFSckesAAlypgjYH5oZJLud2Tvjoy77gbpD8ihWSZFk0cGFhDdJxx8uMMTFce5ulBcJSxVDum6+eYJLLaT8RBp586RQjKquKtdB7y9vFq9HHBC4zcKcny/FhpQJcjsFNYamCMTLYKbJ38BPv7WJUHkCwpMqm1YIZpY+IsKpU0JBojxJi8FUyGQwFEiDlDUauwQFEqbrQqyFERacvkSWsHw5UqkisHdx4uFzTjRtW8HVlhis/WFX+OIDCUuXPV6AvcGc/mJkCtzoSfeeVKl7bbejhlSpu5hR9TEjieIVUKnBjzeVDWKrApIIeTuoDdiK5HxjwP6zOgjUgyFPD/qQKcJrNIElq6pZp0CmNRGLJzFSHhpIcCBgNBP2CWP6IDqsDRFnA278QvKAUAS68rJY6UKliGMah10P/56Yjg3KBYUU7gMaYGLj9Xd2XcXPpsSpWbQV6AmT60FF5Lrw3KnOdo8vnIvkPnEd2UDYkBNKR4BUS38gdAuRGPJLjBs4gb3qUISoq4OLVr1VFzjJJrWT6Lnt06MfPZAXm4rwwr0XZpyz+jP1dFJHoi0ZZFAo4khCoUoeEGI8cIamkIE8w5AfrsCYsgZwYcvcSN1alC9AtTYNjSKUKGihtPbEUAc497b4NQqoYhgEDGBKpdGFhsAU6UwkOPeTXwMqGqCg4bTA8xzs0SW7WAZON22h4mzsZIqAXwv9CrwajHXopvOdOR8ObrM91ji6fi+Q/brudZB6SAueUHlchSZis0VKn2WySy7lboAtvk7gU+o1VMVTogJwauHmFXoclVay+TU/RRefK1YWH0yHLfkeHWYVhGN2+fdB46LFX7yVh+fIqmYzWU4deX7FpE1fu6YFXXyXgR95/hlSqHHo9a44xrvFiu3jmJlqqHHp9XXg4eDpqzs0rTN/dKnBZgD+CGC0sp/UCuhOvuPgzPAcqKeAAsjLgiTqDxQdCqQ4JqQsPp+fPAvuOHjyukskgFM3bY31ZVUE3rAYEnKbg1sGh1w+iDlxX3RakecfoYW7uV9yFlzJ5XLAIWlgd4PWzWD/k3gDhqyvCpRimwqCXg2BxJ2+E0bQB7MbF2C6+b5Zu7nTmFKsPkJtjBLYMxjy4pdCTB3qlDXrnR5DAghMWIwgiAlCqEAQRAShVCIKIAJQqBEFEAEoVgiAiAKUKQRARgFKFIIgIQKkaDJ6eHldbm7O1tdflCnZdkKHA09NjP3++5cwZ+/nznp6eYFdnJIJSNRi66uvP/d//1Rw40FVbG+y6IENBd3Nz9SefnLnttuq//727uTnY1RmJoFQNBkNMTGpo6JnbbtN/912w64IMBe0lJVnLlh3/5S+zli2zajTBrs5IBKVqMFT/7W/x48bFjxmj/etfg10XZCiwFBSkL1x4/Ior0hctsuTnB7s6IxGUqsFQ+d57cdddF3fddZXvvRfsuiBDAUpV0EGpGgxlYWGxo0bFXX89WlUjhNbs7LS77z5+xRUZixe3l5QEuzojEZSqAeNxu0v37Dl5zTXxY8ZUf/xxsKuDDAXNSUlnbr/9+C9+oXj44Q5qRipkyECpGjBOk6nw2WdPXn31qQkTag8dCnZ1kMuPx1MfFSWfMuX4L3+pXLXKjhPsBAOUqgHTVliY+cADJ3/zG/nUqef/+99gVwe57DhbWyveeSd+3LgTv/51webNXefOBbtGIxGUqoHR292t/+67pFtuiR8zJmn27PpvvvG43cGuFHIZ6XW5Ws6cyV6+PH7cuNhrr83fuLG9uDjYlRqJoFQNDNvZsyW7dslvvjlp1iz5zTertm5tiotrLymx6XSOxsaejg5Pb2+w64gEBk9vr7O11ZSeXvzKK/Jp087cfrt8ypTU0NCqjz7qqq3FnPUhBqXKbzwep9lcc+BA+sKFaXffXfTiiykLFpyeOTPzgQcKn31WvXNn+b59Z//5z/rIyPM//NAUG9ucnGxWKCy5uZaCgvbiYqtGA6VdrW4vKSFv2ktK2ouLobSpVG1FRd6iUl1U6CWFhaRY8vMteXmWvDxLbm6rUmnJzW3NybHk5rYVFVlLSzurq7vq67ubm91dXWj9+cTj6XW53Dabq729u7m5q66uvbi4JTX1fHS09q9/zV2zJvnWW9Puvrvif/9X9dJLyXPnpt55p2bv3qb4+Ha1uqO8vKOysrO6uquurqu+3q7X2/V6+/nz8Kbr3Lmu2lpbTc2FotPZdDrb2bOd1dW2s2fhTWd1dWdVFZSOigpvKS/vKC/vqKiAptKmUlkKCsiJbs3Jac3JMWdltebktGZnmxUKs0Jhzsw0ZWSYFQpTRoYpPd37mpZmzsrqqKx0mkyilleUKr9w22xWjebsp59m/P73yXPnlu7ZY87KqjlwIHft2rS77kqaPVs+dar85ptPz5x55o470u65J2PJkqxly3JWrsxduzZ/w4aCTZsKX3hBtXWrauvWoi1birZsKXz++cLnny989tnC554rfPbZgmeeKdi8ueCZZ/Kl0nyptGDTpoLNmwuff75g82ZYzvo2f8OG/A0b8taty1u/Pnft2rz16/PWr89dsyZv3brcp57KXbs2f+PGoi1bSnbtKt+3r+qjj2oPHWr46aeW1FRrWZmjsdFtt4vd+vO43a62NofB0FVf31VXZ6upsZ09Cz3cWlZm1WjaS0os+fmtSqW3J2dmmjMzoeua0tJaUlKMCQkNR47UR0bWffml7osvqv/2t6rw8Ip33lHv3JkvlWY98kjKggVwWrMfe6z2X//qqq215OaWvvZaakhI8ty5WY8+WrB5s+qll4q3bSvZtav09dc1b76peestzVtvad54A0rp66+Xvv566Z49pXv2lOzeXbpnT8mrr5bs3l2ye3fJrl3qnTvVO3eqd+xQy2RqmUy9Y0fx9u3F27cXv/KK93XbNtXLLxe9+GLhCy8UbN6cv3EjnGXl6tXKJ59UPvmkctUq5apVOStX5qxcmbNiRc4TT3jL44/nPP549mOPZS9fni2RKFetUr30UvUnnxgTErpqa91dXcF9ot/gQKni4PG4HQ6n2WxvaOiorLTk5jbFxdVERBT94Q+pISHyKVOKtmwxZ2W5HQ5na6slN7fhxx9rDx2q/uST8j/9qXjbtrynn855/HHF0qXpCxemhoamLFiQMm/emdtuS7rlluQ5c5Jmz06aPTtp1qwLb2bNOj1z5unp00/PmHF6+nT5tGnecvPNib/7nXzKlMTJkxMnT0686abE3/0ucfLkhBtvTLzppoQbb/SWG25IuOGGhEmTEiZNIm9OTZx4avz4+HHjTk2YkHjTTfIpU5LnzEm7++6cxx9Xbd1a+f77dV9+aYiJaVUq7efPD987rj2eXperu7m5U6u1ajTtxcWtOTmmtLSm2Fj9d9/VHDhQ+e67pa+/Dh2+ePt21csvF23ZUvjss0TWc9esyVmxgvTYrGXLsh59NOuRR7IeeUSxdGn6okWpISHJc+bIp02TT5mScMMNpyZMODV+fMKkSadnzDhzxx2ZDz5Y+PzzVR99ZEpLc5rNUB/b2bM1+/crn3wyee5c+c03y6dMkU+ZknjTTQk33HBq4kRvmTABNgWv8ePGecvYsRfew0dYMmbMhY9QxoyJHzMmfuzYuNGj40aPvrDmuHGnxo/3/sX48d6zPH78RVuG9+S1b1PyadPSFy4s3bOnOSnJZbGITq1QqrzTJNh0OkturjEhoeHHH+u+/LL644/L3n67eNu23DVrFEuXJs+de3rGjLR779W8+aYlN/eiJ+J4PL1OZ4/V6mhqAmlrSU01JiYajh07Hx1d/8039V9/Xffvf9f+61+1Bw/WRETURETUHDhQExFRs39/zYEDui++0H3+ue6zz3SffQZvzn76afUnn1R99FHl++9Xvvde5bvvVrzzjrf85S/lf/pT+Z//XP6nP5Xv21f29ttlb7/tvZi/8YZm717N3r1wGS/evr3w2Wdz16zJlkgylixJmT//9IwZCTfeeGriRPnNNyffemv6okXK1avL9+1rSUlxtbUNKyPL09PjaGpqVSrro6LK3n67aMuWgs2b8zdsUD75pOLhh9PuuSd5zhz51KlJt9ySMn9+akhIyoIFKfPnpyxYkBoSkhoamnrnnamhoWl33ZV2773p992XsXhx+n33pd93X/rChemLFqUvXAhvFEuXZj/2WN769YXPP1+8fXvpnj2avXvLwsKqP/649tAh/fffNycnWzUal8Vyke/s8ThNptbs7HNffUWfqYq//OXC6QCrau/e0tdeK33tNbCkwKQC86pk9261TFaya5d6xw4oxdu3q2Wyi6yqbduKt21Tbd1avG2bWiZT79xZsnt36WuveTe7Z4/XWINtvvpqyauvluza5d1mn7EGCq5cvTpp1qy4668/ceWVcaNH5z39dGtOTq/TGbwzPBhEI1Uet9vtcLjtdndXV4/N5u7qcnd1uW22HpvNzSpdXewlVOnp6HCazV11dW0qVUtqquHYsfqvv6766CP1zp25a9YoHnoo9c47k+fOlU+bJp86NWnWrJR58zLvvz9v/fryP/2p4cgRW03NYMwQj8fT09PrcvW6XL1OZ293d293N+wLqVWP1dpjtbra22F6me7m5m6jsdtodBgMjqYmR2OjvaEB4iBd9fXecu5cV11dV12dNyai00E0pLO6uqO8vL24uFWpbDlzpvH48frIyOq//a30tdfynn468/77z9xxh3zatIRJkxJ/97ucFSsafvrJZbEMB7Xq7e7urK7Wf/992R//qFy9Ou2uuxQPP5y/cWPB5s0FmzYVPvec6uWXNW++qf3rX2sPHtR/+23Djz8ajh5t+Omnhh9/hPeGmBjDsWOGmJjG48ebYmObTp0yJiYaExOb4uKaYmObYmOb4uOb4uKMCQktZ860Zme3q9UdFRW2mpqu+nqHwdDd0uK22fo/FB5Pb3d3T0cHnK/ulhaHweCNUp0/b9frvSeorg6cU4hYec+RTucNTlVXe2NVWm1nVVVHZWWnVttRWckNV8FXnVVVZFMQ8LrwSrZZVcXaSHtxcdWHH5657bb4sWNPXnXVyauuSr71VsPRoz2dnUNySgPG8JYqj6fHarWWlTWdOlX/9dc1Bw96bRBSvvhC98UXNayFfebJhUJ9dfbTT7UffFD6+usFmzdnSyQZixenzJt3esaMpFmzUubPz1iyJGfFioLNm0v37Kl8/33d55/Xf/1148mTlrw8+/nzvd3dwT4ig6TX6XSazWA5Np48ee6rr7R//Wu+VCqfOjV21KiUefOqP/mkq74+uGrlslia4uPVO3YoHnooZ+XK0tdeqz10qCUlpV2thtiTtazMdvZst9HY09k5HIRVHHg8XbW19V9/rXnzTeXq1TkrV2o/+KCjsnL4Ov4+GL5S5XY4rKWltYcPF734YuYDD5yZNy9p9uzTM2cmzZx5euZMb4iHlBkz6I9Js2ZdWHLxV6dnzpRPnXp6+vQzt92WvnBhtkSSt369eudO7Qcf1H/9dVNsrCkjo12tttXUdDc3u222n+HAmcfT63Q6mppMGRl569efvOaa47/8pXzqVN0XX7ja2oJVKWdra93hw8pVq3KeeEL7wQfNycl2vb63u1t0IZVhiKe3t7e7u7ulpaO8vF2ttuv1bodDdAd2mEqVq73dmJioeumllPnzT0+fnrF4cd7TTxe//DLx7b3eOCky2UXLybdkhIX6SrN3b9WHH9YdPtxw5EhzUpIlP9929qyztVXUQ7mDoNfpNKWlKR56CPyCnCeesJaVBaEeHo/DYKjZv1+xdGnhCy80njjR3dKCRhPCYthJlcft7m5uPvf119kSSeLkyen33ad56y1DTIwlL6+jvNybkAIuel8hbj+drkLe03EBKF319U6TSbzeXABx2+3nf/gh8/77E2+6qfiVVzoFH09/uepgs9VHRWUtW1a0ZYtZobhoyAJB+hh2UuU0meoOH8584IHkW2/NW7u2Piqq69y5kWbvDCVOk6klNbXu3/9uVSp7OjqCUAGzufLdd3NWrGj48Ue3wzH0FUBEwfCSKo/b3Xz6dOYDD5yePr1o61ZTWlqP1RrsSv3c8Xh6u7vdNpunpyco8Yuejo5z//lP3vr153/4AaUK8cXwkqqezs6a/ftPz5iRt369KT1ddKkfyCDw9PZ2G41tKlV3S4voYr3IkDG8pMpts5395z9PT51a8c473S0twa4OMlR4PMGy6RCxMLykytPT03j8eOpdd5X/+c+utjZsuwiCAMNLqhiG6W5pOf/DD40nTvR0dqJUIcOH5ubm5uZmm80W7Ir4i8vlam5ubmtra2tra25udokt55PFsJMqhmE8bjcO+SHDioaGhsjIyMjIyPj4+GDXxS9cLld8fHxkZCRIFdRc1Go1HKUKQYYbSqUysg9RGFZFRUWRkZGavqerajSayMjIoqKi4NbqUkCpQpB+cLlcIFLJycmi6PA2my0yMvLYsWP0wmPHjoGRFaxaXSIoVQjSD1qtFhyo2trayMjI6OjoYNeoH8AGrK2tpRdC5TMyMoJVq0vkZyJVNpvN/6gnRBkHtH3YONfVD2CoFWrlZ/gTwqX+fwURVoFfBRdSvX7XhKM0xHsBQR+tVkvMq4aGhn5/BW2S92z6+mpAbUDgf33paXR0NNeBtdlsonBph51UkdbAuiYAGRkZrNBmbW0tWLaE5ORkVlMGRz05OdnlcoENDy3PVx2am5thHYZhtFotnGA4/eRX9HKycfiKhGB5exS5RJP91Wg09KYiIyOVSiWrsUK1NRpNW1sb2V/YvsBXsC9kl4Fjx47RPQ36oa+LLVTMn545IEidXS4XHQaKjo4m4RUWrAPO2gvYcaVSyfoVLOe2JV/LuUBMmvRwaIG8h4tuNhAqImsKfMX40QYG1KLgI6+XCn9Nt3xSsYFevIeeYSdVjO/WwFUxOCvQcJOTk6HXQYunuzqRKughsKavLsFQ5w9+GB8fT/f2hoYGWA5/StQhOTmZbAEW8jYXqCTZBdhZ8i+8W2P6+nZRUVF0dHR0dDSsCc1L4CvSzWA5vRekaYJfEBkZyb2SQw+hQx7EehXAH4uA1BmOBqtuXAUhcsY65mRN6ISs6OqIBr8AACAASURBVAzZfVZbAruDd5e5wF+T00EOF9cS4W028EOBrxj/2oD/LQqOJO/VBU4ovVnSgwSu3MOE4ShVvjoPiRSQ5RqNRqlU0o2GtE760EP7gJ5MrksCzZQ0rOjoaNKlyegv9wJOOhLZONEy1pahevQuZGRkgHFB1iGth76EQvuLjo6mh5zhjcBXYFLRF0yXywX1py/pcD3nCgR0IVrTYb+E8ef6TNeZnD6bzQZ1Yx03OCDR0dF09wNtIkeSnHf6oJEfstoSNCQ/0w5YB4ccLm7fppsNvb7wV4x/bcD/FsXdXwK52NNLlEplRkbG8M9jGI5SxXDaBwBKQWsE7/EF4aAvpKSD+WPwMxdfA+nlxA5nmTxcc49ct1kWO3SwfncBeizdGYjRwb2YC3zFu3FubJh7xOidojfb3Nys6Q9/Ah9EqnivRqw/9SUNJITkazXi27JOPeyvgFnNrQ9dT/g5VzVIs+H6oQJfMf61AT9bFJw1gcC/gJANc4apVHE7j69TxcJms7EsdoaSKj//nTQsbq/zJXkk+MJawmqa0P6E7Y62tjboY9ytsSSy36+4uFwucsUmC3n3F3qpn5sdKLwHh6H0kRwiqBtv34PTSjbCajOk04LdQbcl/4ftoZ4sESdXLNZ5FIj7DDQkJNAGhFsU/JHAWYONDP/IFJdhKlXk1BL5Z8UOCTabTaPR0IEqgCtV/vc6OgjKwleD40oV13jhhn7I3xUVFdFBCoDbTHkNAYGvmD5tysjIYAXXWXvHteNYEZDAIlBn1hEmznsyB6gzOa1EQeAjHH/o2OD7w3LiMfVbSXJ15B4EsE1YqiHQbAS+Iiv02wb8aVEoVUGANUbDO2RDh04g4KpUKrlWRlCkiuEMn8Fln5YDl8tFQqqRfVHVoqIi2NlLl6qGhgZ6+DI5OTkjI4NE1ug1WVcCgQHvgDBQqRKAPq30b2E34eDT72FPeR0xFv3+NcuBHZxU+d8GGD9aFEpVEICGArY375WQnH5IeGH9cDhIFR1HIK4Nt6qsgDHv1gYhVSQAzBp54N07VmQKas4db6qtreVaNyz8d6z8l6r4+HhfA47039HjALQlRVtYsI4/6RcsA4cX+to5OKnyvw0wfrQolKogQI8o8/YcaHPcyyOsPBykitgmLpeL7i0EX0NvvuIUA5IqMB+4/ibLUSLQwWbopdxQXWBHAP2RKqitn/YdGdqDaxtvsNnPuDI5Sr5GCbgpfoOTKv/bAONHi8KwenAg4RLeLFve5k5MieEgVfQu8F7NeLfGO/44CKnytdckaMVaTgIf/V6ZLx3/pUo4JZgFWRkuV/RPyHChn7sGwi2Q0MAdrBycVPnfBugd8dWiGD+SFYb/jUG8DGupIhdJ3uZFxoxJWyGpT8NHqsiNV5F8Bg5JcSINq62tjUSXLlGqSF+ia0unhnM3RerjpzQMGv+litSZ6yLV1tZybWp6dIWbqcQdPeDFT32EM0WM/cFJlf9tgOy1QItiBD1cuBrxDqwP/3trhrVUkRbD22jI6Y+k0p2jo6OHjwPIUFYe77fEn4KYNyt1O1Cxqsi+YC18FEjdoOtzWX2EAUkVfQWCwRNiGHLPKUnFYGUYkBzRSD/SFMhGhA8CSUOFj5cSq/KnDZCjIdCiGMFxA24YfkDZsMFlWEsV03eJ8GWyNjQ00LFPiOkOn7A6QAwZ3gsX6+YvuPMrIFLFMExbWxvp1ZF9980J7B25xvozQHYpDEiqmL6k6siLYQ0XAAIZBryp8LwI3xdJIPIHJsygkxX8bAME4RZFvDyWzhKN46azDv+7apjhL1X+APejD1sLljcXnIX/d88NArhxz5+BOT/zbIMIGfgLdkUCj/9toN8WxZuOz8qYBUCUh23fofk5SNVwhlzKAj45weWAZAYEuyKIT/xpUTabDXI16HtCYQmtSmB/ieV0o1RdXiAW4I/TMRzwf2oUJFj42aJYU8Fwp39h+qLsovD+GFFIlae3V6SPriFDOaLo/L7uwkWGDwNqUWQuUN4MLEZw8r9hyHCXqt7ubkdjY293d7ArMjBgoIoE+4NdHSHgDkoyOvGzDAP9DBBRi7pMDGup8vT2dlRWVr7/fntJiae3N9jVGQBkNGf4zwRED5aLIqA2MhFRi7pMDG+pcrtbUlJy16xpPHlSXE8GBNNaFAMrTN/YU7BrgQghrhZ1ORjeUtXb25KSkvPEE/rvvxeXVCEIEliGu1SZs7Jy166t+uijHqs12NVBEHHi8Xh6e912u72hobOqqquursdq9bjdwa7WwBjWUsV4PB2VlUUvvqjaurWjoiLYtRlSel2uns5Op9nsMBhsNTUdFRVWjaZNpWorKrLk5Vlyc1tzclqzs81ZWa3Z2ebMTFN6enNyslEuNyYkNMXGNh4/3njihOHYMUNMjOHYMe+bo0ehNBw50hQX15ycbFYo2goLOyorbTU19oYGl8XS290t0vFW5AIeT293t7O1tauuzlpaakxIOPuPf5Ts3p2/YUPumjUlu3a1nDnT09ER7FoOjOEtVQzjsliq//a3jMWLz376qf38+QBcCjyeXqezp7PTZbF0G432hoau+vquc+e6amuh2HQ6eLXpdLaams7q6s7q6k6ttrOqqlOr7Sgvt2o0bYWFloICc1aWKS2tOTm5OSnJmJjYFB/fFB9vOHas8eTJxhMnGk+caDx+vPH4ccOxY/BKClkOCnLhY0yM4ejR8z/8oP/223NffVV78ODZf/yj8v33NW+9pZbJirZsKdi0KX/Dhrx163LXrMldsyb3qaeUq1YpV6/OWbEie/nyrEcfVTz0UOYDD2T8/vcZixen33df+sKFaffeS7+m3Xtv2j33pC9alHn//VnLlilXrSp45pnibdvK3n5b+8EHNfv313/zjTExsTUnp6Oiwt7QIMbL74gCzCVXW5ujsdGm03WUl1vy8pqTks5HR+u++KJ83778jRuT586NHzv25FVXnfjVr0786lexo0YVb9/eWVUV7LoPjOEuVZ7e3raionypNGPJkrI//rHx5MnW7OzWnByzQmHOzDRlZJjS01tSU1tSUpqTkoxyuTEx0WtZnDrVFBfXFBfXFBvbeOJEw5Ej5//73/qoqHNffVV3+LDu88+rP/648r33yv74x7K339bs3Vv6+uvwWvr666WvvVb62mule/aUvPpqya5d6p071Tt3Fm/fXvzKK6qXXy584YWCZ57JW78+Z8WK7Mce8wrEgw+CRqTfdx/IRMbixRmLF6cvWkTegHakL1xI1klftCh94cL0RYu8UnLPPWn33pt2110pCxacue220zNnyqdNS7zpplMTJsSPHRs/Zkzc6NHxY8bEjxkTP3asd8n118eNHu1dPm5c/Nix8ePGnZow4dTEiVASbrjhwhtYPmHCqfHj48eMibvuuthRo+Kuuy5+7NhTEycm3nTT6RkzUubNy7z//rx164pfeaXinXdqDx0yyuWd1dXuri60toKLp7e3t7u7x2p1GAydWq0lP785OdkQE3Puq69q9u+v+vDDsrCw4m3b8jduzHrkkZQFC05Pn55www1x119/8uqrT1x5JejUiV//Om706NI9e2w6XbB3aGAMd6liGKbX6TQrFOodOzKWLMl69FHlk08qn3xSuWpVzooVOY8/nvP449mPPZa1bFnWsmVZjzyieOghxdKlmQ8+mPngg5n335+xZEnGkiUZixen3XNPamhoyvz5Z26/PXnOnNPTp8unTk2cPDnhxhvZvZr05wkTTo0ff2r8ePgYP24cvE+44YaEG29MnDxZfvPNp6dPPz1zZtKsWUmzZyfNmpU8Z07y3LnJc+bAm6TZs5Nmz4aPSbfcQt4nz5kD78lCWNO7/ty5ybfemjJvXuqdd6YvXJj54IPZEknuU0/lS6WFzz1X9Ic/gEdctGVL0ZYthS+8UPj884UvvFD0hz+oXn65ePt29c6dJbt3g+Zq3nxT8+abmjfe8Ja9ezVvvFG6Z49aJit68cX8DRtyVqxQLF2ads89KfPmJc2alTh5cvy4cbHXXhv729/GjR6dMGlS0i23KB5+WPPGG02xsfaGhl6xDJN7PJ7eXo/b7VcJbh6Mx9Pb3e222XqsVpfF4mprc7W1uSyW7pYWe0ODraamo7y8ValsTkoyxMTUf/217osvKt99V71zZ/7GjVmPPpp2zz3Jt95KLmlxo0fHjhp18pprYkeNih87NnHy5OQ5c9LuuitjyRLFQw/lPP543vr15fv2mRWKns7OYO71wBGBVDEM0+tyWTWa2oMHS159tWjLlsLnnivYvDlfKi3YtCl/48a89evz1q/PXbNGuXo1CFnOypU5K1fmPPFE9mOPQclZuVK5enXu2rX5GzcWbN5c+MILqq1b1TIZ9Grow9CZwZ6CUvLqq+qdO9U7dqh37ADbquTVV0tff70sLKzyvfeqwsPPfvqp7rPPdJ9/XrN/f+3Bg7X/+lftoUO1//qX982hQ3WHD9cdPuxdQsqhQzUHDnjfHzxYe/BgTUSEtxw4UHvw4Ln//Kc+MvJ8dHTj8ePGxMSWlJTW7Oy2wsL24uL2khJraWl7SYlVo2kvKfF+VKutZWUdFRUdlZVeX7W62qbT2c6etdXU2HS6zupq29mz4NV2arUdFRXW0lJLQYEpI8OYkNBw5Ej9N9/U7N9f+f776h07ctesybz//pR58+RTp8aPHXvy6qtPTZyoWLq0+u9/7ygv95mO2xcfcTQ2gkNtq6nprKqylpVZNZr24uI2lQpKe3FxW1FRW2FhW1GRd2FRkXcheVNYaCkoaM3JMWdmmtLSvCZzQoLXaibmM3lNTGw6dQrM54Yff9R//73+u++85fvv+Qt89d135//734Yff2z46SfDsWNNsbGNJ082xcYaExKMcjkceUtBAdQNKmwpKLDk53tf8/IseXmW/Hx2ob8tKLDk57cqlReCjEqlKSOj+fTppri4hp9+qv/mm7rDh2sOHKjZv78mIqJm//6a/fvPfvqp9oMPyv74R9XWrblr1igefjjt7rvP3H6711YaPTr22mtPXnXVyauvBlU6NXGifMqUpFmzztxxR/p99+U+9ZR6586qDz+s+/LLhp9+MiYmmhWKdrW6s6rKYTCI0UYWh1QxDMN4PO6uLrteD92sXa1uV6u9Yeb8fEtubqtS2apUmrOyzFlZ5sxMaOKmjAxTWpopLc2cmdmak2PJzbXk50OH7ygv76yuttXUkChVV21tV12draYGujd09c7q6s6qKm+proZIlv38eYfB0N3S4mxt7eno6OnocNts7q6u3u5ut8PR290Nb9x2u9vhgCXk1VvsdndXl/fVZnPbbD2dnT2dnW6bzW239zqdQ9qSPJ5el8vV3g6eRatS2XTqlP7bb6s/+UT18svpCxcmTJoUN3r0mTvu0Ozd26pU0g3d09vr7uqy1dS05uSc/+EH3eefaz/4oOKdd8r//GfNm2+qd+4s3rYNXOb8jRu9ZcOG/A0b2O83bMiXSsnHvKefzlu/Xrl6dc7KldkSidde7jOZieFMf8xYsiR90aLUO+9MDQ1NWbAgZd68lPnzU+bNu1DIR9byBQtSQ0LS7roLnHFw2DMfeEDx8MNZjz6qXLUqb926vKef9taNKlDJC4X1cf36vPXr8zds8L5fty5v/frctWvz1q3LXbs2Z8UKxcMPZyxenHb33Wduuy1p9uzTM2acnjHj9PTp8mnT5FOnyqdMSZw8+dT48XHXX3/ymmtOXnXVyd/8JnbUqLjRo09NmCCfOvXM7ben33dfzuOPF2zeXPLqq5Xvvlv997/XHT6s/+67xhMnWnNyOiorHY2NPZ2dP49oo3ikChlKPJ5ep9PZ2tpRXn7+hx9UL7985o474seOlU+bpnrpJXNmZk9nZ293t72hwaxQnPvqq7KwsNynnkoNDZVPm5YwaVLCpEmnJk48NX58/NixcaNHx/72t7G//W3sqFGxo0ZdeAPvSaGXXHut9+O118Zee+3J3/zm5DXXQIm99lrWG/qr2N/+FoJ3FyJ68Ib1ESJ9ffE+CALGXXdd3PXXe+sA/3vNNSd/8xsQiH4KVJiudl/lWW+89SQbv+aa2FGj4q6/3htkhIADRB4mTky86Sb5zTcn3XJLamho5oMP5qxcWfDMMyW7dlX85S+6zz6rj4xsio01pae3FRV1VlXZGxqcZnNPZ+dQX+eGCpQqRBCPx223t6vVVR9+mHrnnbGjRsmnTCl45hnwlbQffJD71FNn7rgj4cYb4667Lm70aIjNJ82alXTLLclz5565/faUBQtS77wz7d57vQMLUBYtIoMPFxZSHzMWL874/e8VS5dmPfJI9vLlOStXemOUq1fnPvWUcvVq4uzDGGjuU0/lrVuXL5WCa1/8yivF27erZbILZccOtUxWvH27escO1lfF27YVvfhi4fPPFzzzTL5Umvf003nr1hGDTrF0qXdUhJSFCy+8st70DbNeWKeveBf2vclYsiRr2bKclSvznn666MUXS3bv1rz1Vtnbb5e9/bbmrbfK9+2reOedqg8/1H32Wd2XXzb8+CN4cG0qVadWa9frna2tbodDXHebXSIoVUj/9LpcNp3u7D//mXbvvfHjxiXccAOMWpyePj1+7NhT48fLp01LX7iwYNOm8j//Wff55xCGO/ef/+i//fZ8dHTDkSPeLI0TJ7yZHOQVCnkPSR4nTjTFxkLAqDkpyZSRYc7Kas3JgQI+PgwE08WSn99WVNSuVltLS61lZdayso7y8o7y8o6Kio7y8o7Kyo6KCgjnXVgIr+XlVo3GWlrqDagVFVny8uCPWlJTjXJ5U1wcJJRcSD2BbDWSs0YnoHAXxsRcKH0Lm+LjW86cMWdmWvLz29XqTq2WBBMhBNF17pzDYHCaTG6b7efhwV0iKFWIX3jcbntDg+6LL1Lmzz/x61+fvPrquOuuS5g0Ke2ee4q2bKn++GPDsWOWggK7Xu+yWLxBN4ej1+X6WTojyNCDUoX4i8fttuTmZkskJ6688vgVV5yaMKFg0yb9t9+2FRV1G40/1xAJMkxAqUIGgLWsLGfFiuO/+MXxK65Iu+suw7FjPR0dIypiggQLlCpkAHRqtconnzx+xRXHf/lLxcMPW/Lzg10jZKSAUoUMgK66urx160786lfHr7gi4/e/N2dlBbtGyEgBpQoZAI6mpoJNmyBWlXb33S2pqcGuETJSQKlCBoCrra3wuedOXHnlsf/5n5T5842JicGuETJSQKlCBoDbZivZvfvkVVcdv+KKlPnzjQkJwa4RMlJAqUIGgKen5+ynnyZMmnTiyiuzHn20NTs72DVCRgooVcjAaFOpysLCcteurY+M7MaHRyBDBUoVMjDcXV1d585ZNRqnyYTP5kCGDJQqBEFEAEoVgiAiAKUKQRARgFKFIIgIQKlCEEQEoFQhCCICUKoQBBEBKFWBxG23X8rPHXq9VaUKVGX6xabVOvR6gcoIfEuwKBQ2rTag9bokrCrVIM6C227n7oXTbLYoFL62ZlEonGbzYKqIDAqUqkCiCwvTR0TAe4tCoQsLEyiGqCjWz/URERqJZEA9TfgvoPD+0KJQqENCqmQyX3ok8FvWasaYGP8rPAjcdrtGItFIJP6sWSGVklPAwqbV2rRaY0yMPiICVMYkl8Pu27RadUgIzGJqiIoyyeXwrTokxN3Vxd2U02xWh4aSHYfN8pbB7jTCBqUqkDj0eo1EUiWTwVUaGqs+IkIdEsJtxBaFgv6t02yG1Qb0j+qQEH1EhK9+An/N/RV0fn1ERJVMppFIiFrZtFpSKyJVLM01REU59HryUSORVEilAvp76dSFh2skEoGD4zSbyS7DyrRS6MLC1CEhpOjCwurCw2GXDVFRVTIZQ0mVRaEgB6QuPBy+5aKPiKiQSskEzcaYGI1EwrpCVMlkRP6QSwelKsBYVSpWp7KqVBVSab8/ZPUoX4Xlp3CX0Hh7IIe68PAKqdRtt7vtdlqtjDExxJIiUkU01xAVpQ4JqQsPByGGUiWT6SMi4L0+IsIfQ2xAgGljksvh33l3lpZOrkUJpi7vD8EKg8qDAaVZvpyItWb5cjCvWIBJBRu0qlQWhYI+bgSbVqsODUWpChQoVYEHGjG51OvCwiqkUpa9w+o5ROCIBHALdFquVPVbWNVjbcdtt4Ml4tDreaWKAFaG02yma8WSqiqZzKbVBiqIA14qcehYNiCN227XhYWRr5xmM1SV8e2iwo5YVSr62MJHt90OZ4RV4IDUhYfXhYfDn1Zs2gRWLUrV5Qal6nJBLvUsFwmW0J0H3LF+7RG48nOlyiSXC6sbvT50fpbvyTAMGEQCUgVxNKfZzDJh6L2rkEphR7jbHwQkmkaCdywbkAV4YSBPVTIZ+aEvqTLGxAiYruDB0YoMcT2rSkX+Bf7R3dWFUjUEoFQFDHAEuBYTt6uwlkD3g6E0biGrXbpUkc7PXdOh17vtdl9SZZLLfQkEvS+8PXZwQJSN1ikA1Ar2mt4vOPJVMhmEq9QhIYaoKDgX/Qb+QX3gJ/B3cKjpQBWJ1kPFSIFqYKxqCECpChiGqCiuxcTwhZNY3RvMnH7dN19S5b8DSMJJvlwbXqly6PWwAhkNoMPYYFIRV/fSpcqh10Mnpwfy6C277XYiZHA04MjzFhgTYFm1dPgfdgE0HSxHMBtBvIjQkPE+cBvBayZVgo3wj2mgVAUIlKoAQ2SI9AroVLxOE6TtwPpcGWIFxXmlig7QcIFe56uG3CW+pIrUHKrtj1T5OUrAkkuQDI1Ewopnc0WQmEKsNQ1RUSz3E34LNVT3DZiCDUv8RDICCGoFFpk6JMRRX8975G1arUYicZpM8BEdwCEApSrA0N2+30K3/gFJlUAiT7//NVCpYqjUVkNUFCtryZd7RZwy/4tFoQBZ5Iovr73mttvBZfM1IgnmD11DMnLHMAxoFsMwDr3eJJcbqSQpsjKdYEVEB8YNaYlEqRoCUKoCTL+REV8MSKp85ZeC68Qy4ogr5KuGEOJhfEgV2C9kIfRq/wccA4KwawlHRiBAzitVDr0e5AwMQ258kORVVclkMORHKgNHDBxP1sjpRbVCqQocKFUBhu4YAvk+3Jbdr1R5XZKLLQ4I3JDkAF4nkbeGxOqBILRAXpXbbodoGrxhVWDQ0jwg/ImCscb7iCVYIZUSmaalSsBFBX2BACIJJsKvIKmKXA+MMTHgDgtvCrl0UKoCDN11QTi4ng5vEnm/Rgr0B9avILuafCRDVyxZpPUFakjLKLnx0JcDCAlTFoUCEkd95VWRwcQAHMeL6VeqwPQj7h7ZEZBX2qejdRzSRARcuQqpVB0Swsrg5e4gDD7yD7+iVAUIlKoAQ6TK1pcDzV2Hd7naR9oBWYFXqsB5YW2Ze6sNnZPJaweZ5HKwzkg/pNXBaTaTW1sE8qpYg2sBpF+pIisQSweGYiGTk1hYLKmCDHhyfMCMglA6vYKvPYL7mcGqQgfwcoNSFWCgr5K7QPyXKuGxPKav29BLjDExcB8vCXX77wByF7Lud2OpA7mT0Z+tBRx/YlWw1/QQAQwC0GEmllQxDOPQ60nqg/ri5FhQLjCsaAcQvGZicGGsamhAqQow0OI1EgncouG/AygMjDrRvY7knYPvAxEZWNivVNHbYfqMJpbtAF4k/V9QbUggIo4edxIYt90ecB9QWKosCgXZI1askKU+XKliGMaqUkEWLiRMkIELkttF8rzghpsqmcwQFQWzzUCaFbmjiOsA2iorca6YgIBSFUjILTJ00rOvcTrhTZE0JeJn0fniJEUIPjr0eoiOCxSiRLx3t8HNIhCNIjWEPk93WqfZDJlHwv8VcDvLn7C6ri+LjWgTpE3R69BSZVEoYIIEkGlQWBgqBVEmR4wknXLrIDwYepmOxsgEpSrA0Bdt3gxMgeWs7bByjuhbTIw+5kIiA/DcQv+cdcsxqTOd20k6vFWl4s4Axd2Cr/8KCOBTC68DY5q0DcWN8dNeNiTum+RyVm3h7HDnOIRI4uD3Abk0UKoQBBEBKFUIgogAlCoEQUQAShWCICIApQpBEBGAUoUgiAhAqbpcOM3mAT2Tztdz5fx80B7rLpyRDO9D/S4TvmatQQIOStXlApID/ZcqdUiIVaWqCw/nTp7nTw4hN91xxMI7BQUX4XkvWDPn+ALunrFVVgau+gg/KFUBg5W0CWnQ/U4mB7+FW0Do2c1JjiWZugDSOyEVnjW9ASSgG6KiBNIyf5a3d/CmvMKdRqz5Hri3f5M7B30VMo2XAChVQwZKVcCgp7sTmOKOdxICmEWE6XtwqVWl4t6xQU90ZfM9mdyIur1DYM4pX4XcP+zrtif6ZiaUquEDStVlwRAV5c+DywlwByz5LT2DEnEA4bExXOMIbjz8WSrRQLFRz3NnfNyc7GtlLlzX29ftnLzXJAxgBRaUqsBDtEPgjjzaIwPvz5fWkJnwwNrirgBTwdBBMbDveLdGHrjittth6mH6MZ+whPwLuJncLkc2QlaD++9McjmtpPBzp9lMViCuK2shOQ7gF9O7yTtcQDZCPoI08EoVxKS4QUN/LFPWSVGHhpKp++hJMlgThMFCNLUCC0pV4CHaIeyekG5ApoKiXTwyoTBMdaCRSCB0wrojl8whx6qAr5kb4Csw0EhNyEwyZAm5PxkWsvo5TJkC72EaUnq/SPXIHDhgepDAEHch91iRJwDCjBEsjYapu+gbj8n0pFyp4j7oFKoBgi5wLQEBom/AJo/YIvA6gOgVXg5QqgIMBJsE3DGbVgu6Az0H1lf3TWtFprIiz7aDLk3PtEnPMUAeVUDTr1RVSKW2viffqENCYIYZ8DqdZjNMGgfVA1FgiSM9QUpdeDiZRRN2jagY2TjM9ERMKt6FZDIDMuMK1AdGDFhTO1RIpWSvycP7GN8OIEut+h348+XNoVQFEZSqAAPWAW+IBB4GxRIysAh01DTHtMo49Hp4ri9v0gNM3gbZWyxz5JJWvwAABC9JREFUgDW2RXwlkCpa7FhzMzHU4w+YPmGip+KDLdDOF10lMv0p2RfWxOS8C7mPUFZTk0PBWCprC6CetE4xgrEqUCta1m1+PKCMdR5RqoIISlUgAe3wJVVgAbHi4jB7J69UETeNN9PHodfDt8Sr8sfZBKGxcaZs547ik5+A+NIPgGEFwkAoibvKkirWPFO8C8kegdvLmscOakh8QJAnqA88OlDAibNRT6ZgTU9qvPiRyMQNp9NNuLEqlKpggVIVMEgnhL7KvUTTDyImUSfogSypop9FTodsSeeByD34hlxZ7NcBHJBUkZmRmYstGgD2l7iodJVY2+HdOADGo7ovJwPiUzrqIRTEB4QdZ/mD8LQrgcI7yDA4qRL+I7qgVAUWlKqAYZLLoUuo+56Uyc3T8fVwF5ZUkecGs0RERz3jACyLIZAqUAfwAcGioXcZ1iQ2F701/6UKjgxt8rD0BY4eQx4qw5cHoOM8yYK5WGe5h4KeEN07FbpgCqg6NJSVWQq/Yj1qiMyqzv1TZNCgVAUS7ziRDwdQ4BYZX7Eq9cU5O2Swj/gyQyBVTF88CzSL9t3AN6S3T8JkvNvhXchdAmYULVWgOHDjka/7h+BJGbTBZbz4aaPcQzFQq8rGSfrn9fXAIw74rM0jHJSqwHPpUuW228GK8eUACv9XwKUKsrrAL6P7KiwhvwVBGahUwcaJMEH8m+u1gWUnID1MX/wObCVQdoGV4Tk3AlJVFx6O9wAOH1CqAs+lSxX0N+6muFsYGqli+h4wxZIP8vAbcL4gijQIB5BOyADDjftfsJCV7MoFhI9WTN51fOWdC2Qq8IJSNWSgVAWeS5Eq1uN8/bGqIEZGFwhRsxaSuLjx4octc5fAc2tYu+DLmbJptXXh4bqwMHg4M7013u3wLiT3aZN6Gi/OdGWoB0fzHkCHXm+Sy8ltLmQsEt5z/447SsiNVZEiII4oVUMGSlXgoaUKntBnjInh5lLSEKmCAXt6U7yxKnoFktcuXHyZGH5CAtvBwsg3tQvINAyVVkilhqgoegWIbREjC1xI3hEPYatKwLBCqRoyUKoCD6tl82aZc3/Ca3D16wAKuyeBQiAZamggyRms5TatVh8R4WtWQno1iEbB4xT7zcPy37BCqRoyUKoQISDzC/LFgzKkZVWpwA4SiD0hIwGUKkQIdV96Z7CmNAGREh7LQ0YCKFWIEHDbShArwJpwBhmxoFQhCCICUKoQBBEBKFUIgogAlCoEQUQAShWCICIApQpBEBGAUoUgiAhAqUIQRASgVCEIIgJQqhAEEQEoVQiCiACUKgRBRABKFYIgIgClCkEQEYBShSCICECpQhBEBKBUIQgiAlCqEAQRAShVCIKIAJQqBEFEAEoVgiAiAKUKQRARgFKFIIgIQKlCEEQEoFQhCCICUKoQBBEBKFUIgoiA/w8gAqWuOkD6mQAAAABJRU5ErkJggg==" alt="" />
我们创建数组的同时,还可以为数组指定长度,长度可任意指定。
var myarray= new Array(8); //创建数组,存储8个数据。
注意:
1.创建的新数组是空数组,没有值,如输出,则显示undefined。
2.虽然创建数组时,指定了长度,但实际上数组都是变长的,也就是说即使指定了长度为8,仍然可以将元素存储在规定长度以外。
任务
1.在右边编辑器的第7行,使用new Array()
创建一个新数组,并保存在myarr变量中
2.验证编辑器的第8行输出数组第一个值,在结果窗口中是否是undefined
。
?不会了怎么办
var
myarr=new Array();
代码:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>创建数组</title> <script type="text/JavaScript"> var myarr=new Array(); document.write("数组的第一个值:"+myarr[0]); </script> </head> <body> </body> </html>
创建数组
3-3 谁是团里成员(数组赋值)
数组创建好,接下来我们为数组赋值。我们把数组看似旅游团的大巴车,大巴车里有很多位置,每个位置都有一个号码,顾客要做在哪个位置呢?
第一步:组个大巴车
第二步:按票对号入座
大巴车的1号座位是张三
大巴车的2号座位是李四
数组的表达方式:
第一步:创建数组var myarr=new Array();
第二步:给数组赋值
myarr[1]=" 张三";
myarr[2]=" 李四";
下面创建一个数组,用于存储5个人的数学成绩。
var myarray=new Array(); //创建一个新的空数组
myarray[0]=66; //存储第1个人的成绩
myarray[1]=80; //存储第2个人的成绩
myarray[2]=90; //存储第3个人的成绩
myarray[3]=77; //存储第4个人的成绩
myarray[4]=59; //存储第5个人的成绩
注意:数组每个值有一个索引号,从0开始。
我们还可以用简单的方法创建上面的数组和赋值:
第一种方法:
var myarray = new Array(66,80,90,77,59);//创建数组同时赋值
第二种方法:
var myarray = [66,80,90,77,59];//直接输入一个数组(称 “字面量数组”)
注意:数组存储的数据可以是任何类型(数字、字符、布尔值等)
任务
1.在右边编辑器中第7行创建数组,长度为3,保存在myarr变量中。
2.在右边编辑器中第8、9、10行为数组中每项赋值,分别为88,90,68。
?不会了怎么办
第一种方法:
第7行创建数组:var myarr=new Array(3);
第8行myarr[0]=88;
第9行myarr[1]=90;
第10行myarr[2]=68;
第二种方法:
var myarr=new Array(88
,
90
,
68);
第三种方法:
var myarr=[88
,
90
,
68];
代码:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>数组赋值</title> <script language="javascript"> var myarr=new Array(3); myarr[0]=88 myarr[1]=90 myarr[2]=68 document.write("数组第一个值是:"+myarr[0]+"<br>"); document.write("数组第二个值是:"+myarr[1]+"<br>"); document.write("数组第三个值是:"+myarr[2]+"<br>"); </script> </head> <body> </body> </html>
数组赋值
3-4 团里添加新成员(向数组增加一个新元素)
上一节中,我们使用myarray变量存储了5个人的成绩,现在多出一个人的成绩,如何存储呢?
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgAAAADHCAIAAADgaHyIAAAgAElEQVR4nO2d628bV3r/f3+CBbRoty226LZAi7Yv5Hdt3/TVVioKtEAvwBZyu7vdAkV3pSx2gzobR44b23LsUHYiJ/KGqp2M5Ii0vJZW1sp2bNl06KwikzYj2iRFUiSH1+FFJDUkxSE599+LYx2PeRMl8Sby+WBgyMPDmfNwZp7vOc95zpn/JwMAAABdyf9rdQUAAACA1gACAAAA0KWAAAAAAHQpIAAAAABdCggAAABAlwICAAAA0KWAAAAAAHQpIAAAAABdCggAAABAlwICAAAA0KWAAABNhfH5BIaRZdlw6JAsywLDMD6fLMsBtTqh05WWD6jVbDy+q1NkbDbX8HClTwWGydhslTZUNwDoEkAAgKaS0Onsg4PytgC4hoejCwuyLFsHBjI2W1HhjM2GCsuyTGk0hkOHijZZklCxos3U20sbjUU78THNfX2URlO6mfv6SusAAB0MCADQbCiNRmAYw6FDAsNQGo0sy+i/pc7aPjiYsdnYeBz7aOVxDD09SADsg4N4M/X2WgcG7IOD5r4+c1+f8iP0LSQPyv3K74IAAF0FCADQPBifD3tbw6FD6I+AWh1dWMDOGnlwWdH8J1WqgFpdRQAQyHcjzZBlGZXHISZlMegBAAACBABoHjj+bh0YMBw6FFCrMzYb4/Mhj4zKYA9u7usjVSpKozH19qK+AqlSKXsJOAQkyzJtNKJiRQKADo40AJ09odO5hofLCoBreDih06GRAKRVtNFo7utDWiUwTECtRqGngFqNDojKYAPZeByVFBiGVKlQYdfwMB5asA8NJXQ6c1+fqbdXlqSEThdQqwNqtaGnJ3rzJjLE3N9vOHTI3NeXePBAluXowoJreFgpdZRGg+JmALBPQACApoKcZkKnMxw6RKpUpEqV0OlMvb142BaNDciynNDpUM8ADQ6jFroyYoMFQOnliwQAfWrq7WV8PmUoqfrGxuMZm83Q00OqVALDsPE4ctnogOijjNUqy7J9aEg54BxdWLAPDsqSFF1YQNUWGMbc34/lzdDTYx0YYDc2kCQgecNxMFmWXcePo0Hv6MKC6fBhIZtFp2O8XnwW0+HD6OwAsE9AAIDmgcIvyEEjR48b9ea+PlmWGZ8PxX8QtNGoHAQuGwISGAZ7f1mWA2o1+juh0+G0ItToRn8rw1ClGz4OcrvsxgY+rLmvDzfDrQMDqDIJnc7Q0yNks2i/ub+/NJeJ0miQKqA6o5Y+/gh1Bcr+XFhmzP39qM/xwpb+/kpfAYBdAQIANBUUHjH39RUlXJr7+th4PLqwQKpUaA9qd7PxuLLxrvwKHgNAwZlKPh23xNG3UABKGUfCfyszkZAAYD/7wolvYx8cxJUxHT6MTpGx2UyHD6OvsPE4qpKptxdFkLAAKBvvSm1AoAgVCpEZDh1ChVFP6MWI99AQxH+AegECADQP5HCLNuRzUShcOQyLY+jIiVcJAcmyzPh8qBuhHCdAgSZljF4uGQQ2HDpUdhC4dgEIqNXWgQFZktCIBdpp7u93DQ+j4YSiHkAVAUjodKbDhxMPHqCOCC4sMIyhp4c2GNh4HMWF6ndNgK4GBABoKmw8jkZrZRQf3+4KsPE4GvlUllT2EqoPAiNwuF/ejiaVBmSK0kBxMlJRGmjtAsDG4yhGbzp8GIWMir5LqlQ1CoB9aKjosLgwOTqKBIZUqSD+A9QLEACgqeB2Om00WgcGcDQD+W7rwIDS6QsMQxuNaJLwjmmgCDSkHFCrTb29pd6fjcdpozG6sFA2BBRdWKCNRjQGW7sAyLJsPXLEOjCAR4OR70Y5PLTRaOjpqVEASJXKOjAgZLMCw9iHhnAICB3HdPiwua9PORoMAPsEBABoASi8g1vcyPsndDrrwADWAOvAAMoOii4sVB8DwAgMg8Z70Ya+qCyQsdmKEn6UISC04SopPT7K18T/LVq4Ag0F0wYD3hNdWEDRf1Klii4s4O/ah4aU8xKKDouySFFPiDYY7IODSndv7u9HsaZd/NAAUBUQAKB5ID9uHRhA0Xbk8VEKPx6qRZN4UfIl/mLpyAHeaKMR9RKQYKAwkby95gRypqjBjmaWFW3KEFBpLlCNvMgyarBrNvf3o14FANQLEACgebDxOHbQGBSQUe7Z7XRcFBwv+y02Hket7KLewytI0j59tzLTv0Gg8WEY/gXqCwgA0NXw6fSWxVKIRCRB2MPXUa4nCtzXvW4I1L8x9fZC8x+oOyAAQPciiWJSp1v9p38KXr7M0/QejhBdWIguLDR0EWnG56vUvwGAfQICAHQvEs8HLl3S/8EfrP3wh/lgsNXVAYBmAwIAdC8Sz/suXPjid3/X8v3v5/3+VlcHAJoNCADQvbwUgO99DwQA6EJAAICuQxJFlPYjCYLvwoWHv/M7z7/7XRAAoAsBAQC6Cz6Vyjx/XgiHJUHAPYDn//7vOWXu/74TQwHgQAACAHQRkijSX31l/pd/WT92bMtqFVnW/9FHX3zzm8++8x1mfR2VEba2ciRZiEQkjmttbQGg0YAAAF2EJIrJhw8f/8VfPPzt31774Q8zZnPw8uUv//iPn/zN36SMRlmS2Gg09Mkn1h/8wD8+zsZira4vADQWEACgu2BjMe/o6K///M+/+OY3Lf/xH/7x8cd/+ZdPvv3tzUeP8sEg+e67v/6zP9P//u87fvpTSAwFOh4QAKDLkKRCOOy/ePGrw4d1v/Vbz77zHcv3vuc8ejRx7577nXce/dEf6X7zNy3f+x69vCzm862uKwA0FhAAoBvhadr3wQdf/smf6H7jN5729bmGh60/+MGjP/xD/be+Zf/xj7esVonnW11HAGg4IABAl8JGo4FLlx7/1V89/MY39N/61sNvfOPXf/qnruFhxu2WRLHVtQOAZgACAHQvfCoVnp42/vVff/F7v/f0b/82dOVKPhiEBFCgewABALoaPpOhl5cjMzPpr7+GxZaBbqPOAsDzPEVRbrfbtb4OG2ywwQbbHja3201RFN/4gag6CwBFUetOJ2ywwQYbbPvcKIqqr38upc4C4Ha7151OQRBEAAAAYE8IgrDudLrd7vr651LqLABIuOp7TAAAgG6jOb60zgLgWl9fdzolyKMAAADYK5IkrTudru31qRoHCAAAAEB7AQIAAADQpYAAAAAAdCkgAAAAAF0KCAAAAECXAgIAAADQpYAAAAAAdCkgAAAAAF0KCAAAAECXAgIAAO0L4/Ox8Xj1Pc2ntAItrxKwN0AAAKBNYXw+0+HDypcHsPF40R4lbDyesdmq+GLX8eMJna6WU9uHhiiNpsqnpEqFX2jD+HyGnh52Y2PHw2ZsNvvQkJDNWo8cYbzeorplbDblHkqrpTQaeG1OQwEBAIA2xTowYDh0SLmRKlXRHuQfBYYhVSpTb699cNDU21vkWxGURmPu6zP19tbyOhrrkSOVpIKNx4vcfUCttg8O1uKpkQDIksT4fOb+/ozVivaj/6Ij2IeG7IOD9sFBc1+fua8P/V3j8YHdAgIAAO0IqVJZBwbYeNzc14ccesZmQ81/65EjtNGoLBxQq0mVSmAY9F/8Byah05kOH2a83oBabR0Y2NGZGnp6sHdWQmk0hp4eLD/IL5v7+8vKUkKnw+4bbdaBAaRS6G/74CCSGfvQEG0wCAyTsdnwRqpUpEqF/7vH3xGoCggAALQdAsO4hoeR46M0moBanbHZaKMxurCQsdmiCwukSsX4fKhw9biQLMsJnc7Q05N48AD913rkiGt4uFQkMKiNj8sroTQaHBpCzfmM1Yob72inoacH/ZfSaJQeHNXcOjCQsVrxHhS2Qt0CSqNxDQ8XaQzaqOnpuvQAJJ4XslmJ4/Z/qM4ABAAA2hQUWsEbanErm89KP1vpIJRGY+rtRd48Y7MJDCMwjH1oyDowUDZSJG8Lhmt4uNTnlgqAfXBQOVpQJABFAwnY18uKboq5v59UqSiNxtzfr5Sxuo8BSIKQ83giMzPpp0/5VEoShHod+eACAgAAbQpqHeMNhWVwUxoLgGt4GIWA8DgB8q1sPI4i6djRKwM7AbXa0NNDqlSlg8au48dJlcrQ01PaqyjbAwio1dibFwkAkge0obAV/jQwMRFQq2VJSuh0qCRtMKCvFzX/69UJkESxEA5Hrl0jz52jJifzweDeNEASRZFlJY6TRHE/9WkHQAAAoE1xDQ+jln71HoB9aMhw6BBtMMiyzMbj1oEB5JFNhw8rXbNcEtnP2GzWgYGi7B2BYVAxFI0pqpLSp5MqFaoDCuwgtcjYbNYjR0oFAHcUkACg6uFTJ3Q63OEoGglAW5WA1a6QRJFPpeivvlo/doyanOQSiR1FReI4Pp3mMxmkFpIocpub9PJyymDIOhyFcJhPp8V8XmTZgzhMDQIAAO0IcsRK74zbzuhTPAbwIilzGzTeK0tSadO+0tCuEpQsJEsSHnMu+rRUAOTtTgP6Fg7yKLsL5Ogo+tvc3894vaRKhZr/8nYKEG0wJHS6hE6HzquMfZl6e0urjZrhYqEgsqyYzwu5nMAwL/5Ff6CNYV58qtjYaDR644ZreDi1siLkctWvQubZs9jNm/lQ6IUA8HzaZLL+139Zvv/9taGh9bfe8o2NRa5fT37xRXZtjY3F+HQanfRASAIIAAC0IygYUmkMAG0oNwYF0Iu+WNb17CgAaDwZD/8W5fvL5UJAuNmOnDhSCKwKOFsJTyxAUqHMRiVHR1GHJqBWIwFAh0V6gL6rrLYkCHm/P20y0Ssrm19+uanXb9y6Fbl+nZqaoiYnQ1euBC9fDqrVL7bLl0OffBL69NPQlSuhK1eCExPBiYnApUuBS5fIs2c9IyNZh6NsIEgShBxJRufmIjMzjNuNvTnqQ6QMho2FhfD0tP+jj9z/+79rQ0PWH/zA/pOfuN95x/f++0G1Ojo3l3r8uBAOC9msxPPVr3ULAQEAgHZEGQkJqNWm3l7DoUPK/BnrwAASgIROp8zspDSaSomeOwoAGtQtmuGlTAeqJADy9qCuUgCsR47g02EBQCPMaD/j85XONsCHDUxMRBcW5BIBEFmWXlkJqtW+CxfIc+fId98lz53zf/RR4OOPA5cu+cfHX24ffuh7/32vSkWePUuePes5c8YzMuI5fdp59OizgYHQlSv2n/wk+otfCNls0c/FbW4m7t71f/RR8sEDLpEoUghJFCWOQ90LPp1mY7Etmy354EHk+vXgxITvgw88Z844jx5dGxoi3303MjOTfvKkEIkIDCMWCu02bAACAADti8AwAbUaDeQWtevtQ0M4Ox5ldqLBYVNvLxoPKKW6AJCjo6XTxKILC4aenujNm+i/VQQAF0ACgHJJ0cwDNODMeL0Cw1iPHEFKhg5eNKMY9wCEbNbc328fHMxYrUUCIMuyWCjwNM3GYgWKygcChUgEhemFbFbIZgWGQX/wmQy3ucnGYmw0WohE0JYPBOKffx5Uq92nTtlfe43+8stXYjWSxMbjkZmZoFq9ZbHUOPaA4lEvJCGTYePxrNOZ1OkognC/847zjTe8o6NhjSb54EHW6eTT6fZJQAIBAIB2hPH5UKgED+QiAUAeFkXGsbMWGAbtRzJQ6ZiVBAAlhlaaQozct31wkN3YKDsRrOg4yKe/SE6VJKQZKOXfeuQIqVKhUYrEgwf2wcHowgJtNKJxbOvAAKlSCdksbTSikhmbDSWJ1jJ7uUbEfD5lMLhOnHC+8UZiaYlPp1/x/rEYNTkZ+vTTnNe7HzctiaJYKPDpdM7r3Xz0KDIz4xsbcx0/7n7nnfD0NON2t8lcBBAAAGg7Mjabua+P0miUA7lIAHBu6B4SYyoJAJoWUGUxH9potA8OCtls2R4AauwjScDHKW22u44fRyEdeXuk2tTby25sKM1BYmDq7cVJnwLDBCYmTIcP7zh8vTOSJGxtpZ8+dZ865Tp+PG0yFQV/hFwu+eCB/+LFfCBQr1gNUgKBYbhkMut0bty65RkZcZ86tanXv6I9LQIEAAAOBvtfDqGSbNQryXL/x2R8vqJVLhD7zwSVRJFLJjdu3XL+z/+4jh9PrayIhUJRgZzHE7h0Kf3kSYOa55IoCltbWzabf3zcefRoYmmJT6VaOyoAAgAAQOcjFgqJu3fXfvQj34ULmefPxXy+qACfycTm58PT0/zmZkNrIoliPhAIT097RkZiv/wlG4u1UANAAAAA6Hwkjsva7fE7dwoUVdrAl3h+y2Lxjo5uWSw1Zm0KuZyYz0uiKPE8n05LPF97PEcSBDYWi87Org0OhrVaLh5vVSwIBAAAgK5A4jjksks/4mk69Mkn4c8+41OpHY8j5vOMyxWbn888eyZkswWKCn/2GRuNYicuCYKwtSVks1Wa9i9CUr/6lfudd8JabSEUasl0ARAAAAC6GpFl6eVl1/Bwdm1tx8wfPpPZ/PJL/8WL4c8+y5GkwDCpx4/Xh4dTjx+LhYIsSXw6nVldjczMJJaWqo9bSKLI03RSp1sfHqYmJwvhcPP7ASAAAAB0NVwyGbxyJTIzI2Qy1UsKuVzi/n3XiRPx27fZWEwSBLTAnPfChcjMjLC1xadSsfl58ty5Tb2e29wUGCbn8XDJZMWugCTx6XT8zp31Y8ciMzM8TTd5PAAEAACA7kVk2cyzZ+S5c1mHo3oQRhLFAkWRZ8+GP/sMp8xKglCgKP/4ePTGDT6VypjNpEpFr6ygGcKJu3c9IyOber3IspWPK3Gbm4n7990nT8bv3OEzmWb2A0AAAADoXoStrcj165Hr1/mdmv8iy6afPl0/dmzLapV4XhJFgWGyTmd4epo8dy7z9dd8Or1x6xY1OclvbhYoipqa8oyMbNy6xUajO7TrJYmn6fC1a+tvvrn1/Hk1tag3IAAAAHQpkijmvF7fxYuZZ892HIOVOC5lMKy/9Vb8889TBkPywYPApUvrb77pPnmS/uortApp9Je/DGs0zPo6NTXlPHo08fnnfDpdU014nnG7XcePU5OTPE03rRMAAgAAQJciFgqJ+/eDExM1vRhAFAvhsP/SJfuPf/z8yBHT3/3dk29/+9m//qvvwoWc14tm/KJIjuvECdt//7f/o48Sd+/mPJ4ap7AJDBObn3cND29ZrU3rBIAAAADQlUgSl0wGJyYS9++Xzgsr/w1ByHk8SAM8Z85EZ2djN2+S586Fp6eFTAYNEvg++MD093///N/+zf6Tnzhef911/PjmF19Uf+sAPjjjdntGRsLT03wq1ZxOAAgAAADdiCQIGbPZNzaG2u+1fEXM55MPHrjefntTr+cSCbS0w8biouf06UI4LAkCl0igRd/SJlPO59uyWkNXrnjOnMl5PLWcQmCYxN27ntOnt6zW5qwWBwIAAEA3wqfTIYKIzs4KW1s1fkVgmNjNm+6TJwvhsCSKePVQ8tw5NhYTC4UcSTrfeGPjV79Cy5eKhULm2TPX22+nHj+uJaojiWIhEvF/+GHw8uVaolL7BwQAAICuQ+L5jNnsGRnJrq3VPgVXLBSSDx44f/azpE6XI8ktmy0yM2N/7bWNxUUhl0MBIufRo/Hbt7lkkk+nC+FwYmnJdeJEZnW1xha9WCjQy8uut99Oraw0YSQABAAAgK6Dz2Soq1dDV67sauk3FOWnJifdp055RkZcx497zpzZuHWLSyZlSUKfuk+dcp886Rsb854/7zl92vnGG7uL6UtSIRz2f/ihb2yM3dho9LwwEAAAALoLSRByXq/75Mm00bjbVrYkCFwymTGb6eXltMmUDwaVR0Axn9Ann4SuXKGmpiLXr9PLy7td81nM5xNLS2uvvda4hakxIAAAAHQXYj6fuHvXd+FClXfgVEfieZFly79NXhQFhhG2ttDMgFfeN1njwUUxHwigOQE7rk6xT0AAAADoLrhEIvDxxxu3bimzMyVJomna5/Otra2Zzeac4iOHw7FajkaU4ThOlmUhmw1fu7b+1ls5kmxoFAgE4CWiKHq9Xr1ef+PGjampKaK5aLXaO3fuWCyWbD1ef9pJtnSYOWBLa22ReD7z/Dl57hzjcuEmfCqVstlsjXbuO5bJZrNmszkYDPL5fNpkWnvtteT9+0VvLqsvIAAv8Pv9s7OzTb6DyzI1NWU0Gvl9LA7eSbZ0mDlgSyPYlS1CLhe7eVO59H8wGESO2OFwJBKJQqHQqtBCPB43m82rq6trNls2EvFdvFjjLOU9AwIgS5L09OlTdCfNz8/bbLZUKiXstCx43cnlcn6/X6/XT05OEgRx8+bNrZrTkzGdZIvcWeaALXVnL7ZIEhuL+cfH6eVlPHgbi8XMZnM8Hm94jWsgl8vZ7fbV1VWr2bxx757rxImGTgoDAZDRrXz16lWHw9EOgwqbm5sLCwsEQczOzuZrm6GO6SRb5M4yB2xpHLXbInFcZnXVe/583u9XxtbZJi7AuSOCIKyvr6+aTI5Hjzxnzmz86lc1ria0B7pdAHw+H+pChsPhulSsLvA8f/v2bYIg7t27V/u3OskWubPMAVsaTY22iPn8xuIidfVqjYt0tgqO4ywWy9crK55PP/WNje28oPRe6WoBEEXx+vXrBEHY7fZ6Vaxe5PN5rVZLEITf76+lfCfZIneWOWBLc8jn89euXatuC0/TwYmJ5MOHYqGQSqWi0eg+B6gaRyKR8LrdGysr7lOn9jBfoUa6WgA8Hg8KYrZDN7YUm81GEMSdO3dqKdxJtsidZQ7Y0jSq2yIJArO+7j1/nllfl0TR6/Wurq62Sei/LJIosvG4/9KlsFYrZLONGAruagF4+PAhQRA2m61etaovLMui1LpCDXlgnWSL3FnmgC1Ng2XZq1evEgRRdiRALBSSDx8G1WoumZRlGeV91nhDtgr0khn/+HiDFojuagG4ceMGQRCp7WywNgSFNSmK2rFkJ9kid5Y5YEszqWKLwDCRmZnY/DwaU0UJl+3ZlcGI+Xz87l3v6GiD1gXqagFAjYXmp6/VzqNHjwiCcLlcO5bsJFvkzjIHbGkmVWzhM5ngxAR+RTvK/W96BXcBRVHPTSbvzZueM2fywSAIwEvqIgAokbleVWoEKysrBEE4HI4dS3aSLXJnmQO2NJNKtqClOsn33ss8e4bS6ttfAILB4NdGo/f2bdeJE4zLVfuy1bUDAnAg7+ZSOskWubPMAVuaSUUB4PnMs2fkuXOFUAg1pQ+EAKw+eeLX6daPHduyWkEAXgICUEQn2SJ3ljlgSzOpZIvIspuPHgV+/nO8AsRBEYDg8vL68HCN7xTbLSAAB/JuLqWTbJE7yxywpZlUskXI5WLz82GNRtheOY5l2baaAFxKMBhcNZnCFgt59mztb67fFSAAB/JuLqWTbJE7yxywpZlUFACGoSYnN27dasTimtls1qKAJMm6HDYYDK5+/XXU4wl8/HFkZkao09q6SkAAdnc3Z7PZ2DY1foXjOFR+DwvwNufJxDWMxWJc1WWncEmapnd7liYIAE3THXNparwidaEbbjNha8t/6dLmo0eNCKQ0UABWV2OBQGRmxv/hh42YCgACUNPdTJKkXq9Hk+aV6PX6Ku4mFAotLi4qy8/Nze3q5mjok8lxnMPhKKphpYPQNL20tKQsptVqLRZL7adrnABwHLeyslJ0dVZWVqq49ba9NNlsFh1ZyeLiYtm6oYtSnVqMasltVvbhbdRtJkl8KuV7//2UwdCIlTUbKgAbFJVYWnKfPJkPBMq+g2w/gADsfDdbLBaiKmWvd+ljrPRNNdawcU8mTdNzc3Nlq1daOBQKNdOWXZlD03SpMGPfUbYJ2baXJhQKVbKlbN1isVilwphavGdLbrPSh7dxt5kkiuzGBqlSpb/+GufSrK2tra2t1W5LFRokAKIoCoIgFAr08rLr+PGswwEC8IKWCIBer3c4HKhz6nA4lHd2UWMTf0Wr1ZpMJvQVk8m0q8dSbtiTqXSai4uL2CiSJEufNI7jcGG9Xh8KhZD5eGfdbandHGXdUGsXWYHbm1qttija0LaXJpvNKn9SfEeFQiF8pxXVDQvA3NxcG/YA2uc2Q5MAPCMjWxYLFoA6ZgE1SAAQIsumHj92vvlm1m6veyYoCEBNAqDX60vjCRzHYUdjMpnw/mw2i11MUQuUJMlKmlGWRjyZyietliNj51j00OLHu9TJlqURAoDb8kV1U14a5UftfGmwLaWeDmuDVqtV7scCsKsgSaVTd/BtJoki43a7T57Mud24EX2wBGD92DEQgJc0UwCq3Ha407q0tIR34lu57GOJn/NanopGPJm7qoAsy/gxLv0dsKX1bWbKtZnDcRz25qV1U/r60gq34aWp8jsr66Ycc2pnAWir20wShKzD4RkZUb4H5qAIgMRx9FdfgQC8QpukgeInUCkAuO1ZNgBN0zT6dHFxccfjNyLOgErOzc3tWFhZW71eX/opNr/sp0XUXQCw+lY6u16vRwVCoRDa086Xhtim7Kc4cnUgBKDdbrMX04DPnmUjkQMkABRFWSyWRCRCr6yAALxCmwgAjhsoQ0DVn+RaCmDq/mQ6HI7aG1PK8pVcDPq0KDRRlroLAPaJlepWWqCdLw1uApfNK8OtYGV4qm0FoO63GXrrr1ar3fGRLy8AHJc2mbwqFReP40zK9hcAnAWUMhjWjx3L2mwgAC9oBwHgOA6Nzmm1WuVjuaMTwYluO6Y51/3JxI3iGjPfsQ+tVAfstnY8VPMFoLTl2M6XBsdMFhcXS68OutOUHU25jQWg7rcZetUXUSF5VElZW0SWTRmNvgsXeJo+kAJgNDrffLMRywGBAOxFADiOI0kS52YUXW/sZSoNHmAvs+OUpQY1M1GDnSRJZc512YwR/CRXqmojPGaN5mCvoex+KSkN0LXzpVFmAaHkd1xJbGnRj6w0UOl9djt/quNvM5FlUwaD74MPeMWbDHYlAEUufj/ULg/KHgAIwCu0SgAsr84J0Ov1pXckvlkrXekWehlUbG5urlJ29uLiotI57ljVRthSoznKJMjqBbAAtPOlkWWZpmnlhCmUqIpOpNVqS+tcZWq/XoYAABLdSURBVB7A0tJS7TLQ8bcZSqTxjY3x6TTuAexqLaAWC8Djxw1aEBQEYL8CUHo5cUBzbm6utKWJA0fN9zJF/mJubm5lZQXdlMo2mnIItJ0FQFYEoMoeFl8ILABte2kwsVis7FwwPI5dVLise0VUmgfXaFva8DZ7pQewJ6fRWgHYfPTI9fbbzPo6TAR7QasEIBaLoauoXBmiNAkd+xHUl1fOf1E+3q0SAK1WW3pq5XOL79E2FwDs0IltMUY/tcViUTalsQC07aVBWBSh8KLICVEu0pXNZpHJRXuUNtZ3isYBvc0kjks/eeI9f55LJg+iACSWljwjI414KRgIwL4GgbGXsbw6CldlfQL0YKA/dnw4G/RkFo0lYiyKOc9oT5sLgKwYO63yOytdZ3teGlmRUaa8l7LZLI6PEzWviKCchNX8mcBteJtJPL9ltbpPn8Zvg9ktrRWAjcVF7+gol0iAALygHQRArjDbCH9U6pvQCmWNyJypy5NZak77C4Asy8o2LwKt7FYpubANL4386sBpqYG4njWudYptr0UzOv42kwQh5/G4T55k1texDz0wawExTHRuzjc2BquBvqRNBEDeaW6RrFjXt+i8lR4PJfV9MvF0myqnxo4G/Rc31srGoOXt9MT6ekx5T5cGr9SNUw8t5SZPKWmfS4MntVXy15VWSqjEjl5YSfNvM5TXT2ynddZ+m+1xHoAo5gMBz8hI1mY7cEtBCLlcdHbWPz6uHMGuFyAA+xWA2tsmCPyoW1qxTGNRy6tSgVIBqFTbovJVaP4LYbA211i+hZdmx995Vw59t+Wbf5tVEoBK5heVr0LFxeDCYc+ZM5nnzw/cYnBCLhe5ft0/Pi5kMiAAL2gfAcBepkYBwMGHWjI06v5k4tqWnaFTOoMf+5GyDc9a2nqYJgsAtqWW9QMQLbw0dRcAHDWq7yodB/Q2QwJAnj2befbsgApA4NIlEICXtIkA4Fu5xuPs6laWG/BkVl8NDXsN5XOI9pRtze04g19JkwVgx7lFRbT20uDOR6VliPBPXWnWW9nq1VjDdrjN8GIPpeX3f5uh5aDdp05t6vX4jWDtLwBoLaB4KERNTvovXkQhIPRD7dP1YbpFAMreuDXezUtLS5WcCPYytURmlfkn+0nQ3o8tVdZDrpQFX8mVKMvvef3kStXepwDgOtfY/G/5pcErmxIV4uCll4am6UouW5mIuec00E66zSYnJ6fGx/0XL0auXRMYBu1sfwF48UpIn887Ohr4+c/5dFreVkoQgOYJACqGprArX9OBo/9FawEhlIVpmrZYLLvKzEPU/cmUFa0z5eRS5SsSi5wmbhqjmiCHopyzWqOTbZAAKEdxOY5TXpei6aaY9rw0FsWbapTVUGaCKn9q5OXxa21wYaU5tTSZG2GL3Ga32eTk5OTEROTatfD09IEUgPPnqclJYWtLBgFANF8AqlD2elcqXGMMBNGIJ1M5faGUsk7TUvmlmDW2MXdly67MqVS3skuqKQ/ehpdGmfKPXvKlvFJFl6b6NGBi369R3KctbXWbIQGI3bxJTU4K23fFQRKA0VFqagoE4CXNFAD0Rviy92WVFVfKFq4xHo1pxJMpyzLHccqXIGJMJlOlx4wkydL5U0tLSzU+lruyZVfmlHqNopXUKh28PS+Nsv1eZFFRSY7jimYvK8u3XMzkdrrNJicnJy9fTty75//wQ35zE+3c1VpA1WlCDyD82WcgAC9ppgAgOI5DLynF17h6RDIUCuEbIhQK1bgubhENejIRaE1TbM6OzxgKsKDyDoejLktOVqp27eZks1l8URwORy1+vP0vDV5xBNWw+qWhaRpfR4vFslslk7vgNpucnCSuXMlYrZ4zZxiXq+4r6jSjB3D1KgjAS5ovAC2hoU9mk2nmIHAT6M5Lc0BtQU6T29wM/Pzn8c8/FwuFVlVvVyABiHq9pEoVnp5GwSsQAFkGAehoW6rsbx+689IcUFuQ0xTy+cT9+8GJCX6XvYpWEQwGV02miNPpPnUqOjuLhq9BAGQZBKCjbamyv33ozktzQG1BTlPk+S2bjXzvvZzXK4liHdcCahCiKPIsy7jdzjfeSNy9K+ZyMggAAgSgqGQn2VJlf/vQnZfmgNrywmmKIhuLeS9cyJjNEsfVMQuocYgsm37yZO1HP0objRLHySAACBCAopKdZEuV/e1Dd16aA2oLdpp8JhNQq+lf/1pk2QMhAEIuF1tYcP7sZzmvF41dgwDIMghAR9tSZX/70J2X5oDagp2mwDDU1FRiaUksFA6EAPDptH983Pf++1wyifaAAMgyCEBH21Jlf/vQnZfmgNqiFICwVrtx65aQy5nN5tXV1Xp50kYQ8PnMS0vPf/rT6I0beP4aCIAs10kApqenCYIQ6/2SnTry6NEjgiA8Ho9yZ8fbIneWOWBLMylri1IAItevx27eFBhmbW1tdXW10MYpoetra8apKfN//mfq8WNpe/4ECIAs10kA0CJTqVSqvnWrI7dv3yYIIhKJKHd2vC1yZ5kDtjSTsrYoBSB640Z0bk5gGK/Xu7q6Go/HW1XV6oiiaDYYHo+Orp84UQiH8YvMQABkuU4C8PDhQ4IgbDZbfetWL1iWnZqaIgiiqJHS8bbInWUO2NI0WJa9evUqQRD5fF65/6UA5HLR2dno3JyQy21ubno8HmZ7bbh2I76xYXr48OnwMF4GDgECIMt1EgCPx0MQxPz8fHvGAW02G0EQd+7cKdrf8bbInWUO2NI0KtmiFIDY/HxkZkZoV7+P4HneYjY/+eUvLa+/vvnokahYswgEQJbrJACiKF6/fp0gCLvdXt/q7Z98Po9WxfL5fEUfdbwtcmeZA7Y0h3w+f+3atbK2YKcpFgrx27fD09NCJqMs0G6jGuvr618bDJarV93vvJP3+SRF9UAAZLlOAiDLstfrJQhiamoqHA7XtYL7guf5O3fuEARx79690k+7wRa5s8wBWxpNdVteCgDLJh8+DP7f//GKYQyGYSwWS1sNBiSTSavJFJyaCqrVRe+CBwGQ5foJgCzLT58+JQji6tWrDoejHTq2m5ubCwsLBEHMzs4WhTIRXWKL3FnmgC2NY0dbsNOUeD7z7Jl3dDQfCOBmNUVRaE6Aw+FIJBKFQqHJRkmSxHFcKpV6WXlJKmxs+MbGNm7dQitAlNpSr1N3uwBIkvT48WNUYH5+fm1tLZVKNb9LmM/n/X6/Xq9HF3h+fj7zai8V0yW2yJ1lDthSd2q35aUAiGIhEvFdvLj55ZfKNUFpmrZarasKlB0CtCpnKfUqg8HBK0kQsk6n+/TptMkkvvrSAhAAWa6rACB8Pt/s7CzRBkxNTRmNxh3fZ9IltnSYOWBLI9jRFqXTFBhm49at0JUreG4tQpKkZDJJkqTNZjObzU0WgOfPn7tcLvwuB5FlNx89Is+dK4RC0qvKCgIgyw0QAFmWRVH0eDwPHz68ceMGSoxrJlqt9vbt22azeUuR8gW2dJ45YEvzbVE6TUkUcx6P7+LFjNlc9zfD1AuBYaKzs6ErV4oGAGQQAEQjBOCgALa0LZ1kTifZUuQ0ha2tyPXrYa1WqBAyajGSxCUS/vHx+O3bYsmQBgiALIMAgC1tSSeZ00m2FDlNieNSRqPn9Om83y+1WQKoLMsSz2fX1jxnzqBlq4s+BQGQZRAAsKUt6SRzOsmWYgEQRTYa9Y6O0svLYp3eC19HxHw+/vnn/osX2UikVJ9AAGQZBABsaUs6yZxOsqXUaaJ1ocMaDV5ls12QJJ6mAx9/HLt5s2zdQABkGQQAbGlLOsmcTrKl1GmKLJvU6cj33uMSiRZWrBSJ57NOp+fddzNms8TzpQVAAGQZBABsaUs6yZxOsqXUaUqCkF1bcx49mnU42ioXSGTZxP37vrExNhotOz4BAiDLIABgS1vSSeZ0ki1lnKYkcYmE58yZ5IMHYju9EoDPZIJXrijfAFMECIAsgwCALW1JJ5nTSbaUdZpCNhsiCGpysn2GASRRzPv97lOn0FuLy5YBAZDlvQoAAAAAYvLyZc0bb/zin/95amyM+PTTVleHIAhi8vLl6bffvvGP/3h1dJT45JMqJUEAQAAAANgHn3xydXT0xj/8g+attyYvX251bQiCICYnJq798IfXv/vdqfHx6iVBAHYnAAAAAEWgN0T6x8cLFNXyGWGSKLIbG6RKtbG4WLQCaANPCgIAAEB3IglC3u/3vf9+7OZNPp1ubWXEfD6p062/9VbWZmtaYhIIAAAA3YvIshmz2XfhQvzOHWGnReUaiCTlg0HfBx9Qk5M8TTfxtCAAAAB0MQLDJO7eXX/zzZTBULr4WpPqkMvFP//cc/o043SWnf/VIEAAAADobiSJSyajv/hF4NKlohfwNun8oph1On1jY5t6vdCs6P+LU4MA1AWappeWlgiC0Gq1Foul1dXZL7FYzGQytboWdWNlZWVubo4giLm5OZIkW12d+oCN0mq1KysrVV6HclAgSXJpaaklp0ZvCgtOTERnZ/l9rBEdmJiwDw7iLaBWyzX4KD6dDms01OQkl0jUUr6OgADUh8XFxZWVFVmWaZrWarX4zT4HDo7jQqHQ4uJiqx7FRqDX62malmU5FosRBEE3McbaOJaWlpAh2WwW334HF3Rp6pjguFskjtuyWn0XLhS9LXJX2IeGSJUqY7VmbLaMzcZsv+Kx+nlTBgOpUmVtttLFnxsNCEAdoGmaIAjcBDOZTHq9vrVV2jOoKzM3N9dJAqBkaWmpA7poRVgslgN9vWianpubczgcLRQAWZaFra3Y/LxnZIRxOveWh2MfGqI0mtpb8Wjqr/fChcjMDJ9K7eGM+wQEoA6QJLm4uIj/GwqF5ubmWlif/XPQHUoVFhcXO0wAOI470Eah+odCIdQJaOVDLUkFivJfukRdvbq3aMzuBECSCuEwNTXlHR1tydiDDAJQF4rcJbqPW1if/dOpAtBJISB5u7t20IedFhcXHQ6HvH11WvtQSzy/ZbWSKhW9vLyHjCD70JC5r88+OOgaHs5YrdVPlPN6KYLwjY1tPX/ezMyfV6oBArB/QAAOBKileXCjc6VwHBeLxUiSnJubO6DDTiaTCY9etIMAyCgr9N4934UL6a+/3u1gQEKnQ9F/SqMx9PTQBkPZYhLPZx2OgFodnJjIOhzND/2/rAkIwP4BATgQrKysLC4udkC2TClIA1pdi72AcueKaLGYSRK7sUFNTZHnzqUMBi6Z3FvznBwddQ0Pl4aDhGyWXlnxvPsuNTWVDwRa1fZHgADUAZQ2g/9bNCRwEOk8AVhZWdFqtR3p/eWOaHPIbdMDkLezQjdu3fJfvEhNTqafPuWSyd3G6Cmt1j44qBQAiePyweDG4iL53nvRX/yiUO6Vv00GBKAOZLNZgiCy26uKr6ysHPScvA4TAOT9Oyb0L8tykZJZLJYD2gNQ0j4CgBDz+azDEb1xw3PmDEUQzPq6wDBVyhd9ah8aUs4D4FMpemXFPz7uHx9PGY08Tbfc+8sgAPUChRdisRhKZTu4viabzSLvPzc3Z7FYDmhkWQlyK3q93qKg1ZXaL7FYDOVNoltOq9WGQqFWV2q/tJsAIIStrYzZ7B8fJ8+epZeX+VSqkuPO2Gzm/v7EgwdoDMB0+DC7sYE+4mk6dvOm6+23Y/Pz+VCohUH/IkAA6gPHcchv6vX6A+00kQBgDrQtiCKLOkMAOI5zOBx6vX5paWllZaUDLpO8faVaXYsySIJQoKiNhQXf2FhkZibrcPDpdKkMCAwTXVhwDQ/bBwdJlQp5f4nn88Fg9MYN7/nzyYcPW5LsXwUQAAAAgJ0R8/ktmy08Pe0bGwtPT6cMBjYWE7a2xHxeyOXEQuEVSZAkMZ/nksn0kydBtdp/8WLm+fNKb3lsISAAAAAANSEJAp/JbNlsYY3GfeoUee5c8PLlyMzMxsJC4v79lNG4ZbNlnc6sw5E2mTZu3fKNja2/9VZ4ejpHkm3o/WUQAAAAgF2BZCDn89HLy9HZWWpyMnDpkvf8edfx486jRx2vv+54/XXn0aPke+9Frl/PmM18Ot3kJd5qBwQAAABg90iSyLICwwhbW0I2y6fTBYrKeTxZpzPrdOY8Hi6ZFHK5dkj1qQIIAAAAQJcCAgAAANClgAAAAAB0KSAAAAAAXQoIAAAAQJcCAgAAANClgAAAAAB0KSAAAAAAXQoIAAAAQJcCAgAAANClgAAAAAB0KSAAAAAAXQoIAAAAQJdyUAVg3elcdzrre0wAAIBuozm+tM4C4Ha7151OQRBEAAAAYE8IgrDudLrd7vr651LqLAAURSHhgg022GCDbT8bRVH19c+l1FkAeJ6nKMrtdrvW12GDDTbYYNvD5na7KYrieb6+/rmUOgsAAAAAcFAAAQAAAOhSQAAAAAC6FBAAAACALgUEAAAAoEsBAQAAAOhSQAAAAAC6FBAAAACALgUEAAAAoEsBAQAAAOhS/j9iOpzWCV2EfAAAAABJRU5ErkJggg==" alt="" />
只需使用下一个未用的索引,任何时刻可以不断向数组增加新元素。
myarray[5]=88; //使用一个新索引,为数组增加一个新元素
任务
数组中已有三个数值88,90,68,为数组新增加一个元素(第四个),值为99。
?不会了怎么办
myarray[3]=99;
代码:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>增加新元素</title> <script language="javascript"> var myarray=new Array(); myarray[0]=88; myarray[1]=90; myarray[2]=68; myarray[3]=98; document.write("数组第一个值是:"+myarray[0]+"<br>"); document.write("数组第二个值是:"+myarray[1]+"<br>"); document.write("数组第三个值是:"+myarray[2]+"<br>"); document.write("数组新增加的值是:"+myarray[3]+"<br>"); </script> </head> <body> </body> </html>
增加新元素
3-5 呼叫团里成员(使用数组元素)
我们知道数组中的每个值有一个索引号,从0开始,如下图, myarray变量存储6个人的成绩:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAiIAAADqCAIAAAAQ8rmNAAAgAElEQVR4nO2d7Y8bx33H+yfcoW7iJ7ip69ZB6jbUC8ty09Zo0ZRKUbQIiiIGGDRO8yY1TijqAm2aXoA2feEC57pNURsg4CYbKT4mtkTLNCUZpswTJdvU0aJ9No8+3oN4vBMpHcWz9nQidcfH6YufNR4vucMluUvOrb4fLARxOVzO73Z2PjsPO/wlBgAAADjGL406AwAAANwMNAMAAMBBoBkAAAAOAs0AAABwEGgGAACAg0AzAAAAHASaAQAA4CDQDAAAAAeBZgAAADgINAMAAMBBoBkAAAAOAs0AAABwEGgGAACAg0AzAAAAHASaAQAA4CDQDAAAAAeBZgAAADgINAPUopLLNSoVxtjs2BhjrFGpVHI5xti6378ZjbanX/f7q6VST1+xnU4vT06avduoVLbTabON8gYAsA40A9RiMxpdmJhgtzSzPDm5EQoxxuZ9vu102pB4O52mxIyxwvT07NiYYWOtFiUzbEmPR08kDDv5Mee83sL0dPs25/W25wEAIAeaAcpRmJ5uVCqzY2ONSqUwPc0Yo5ftSliYmNhOp6ulEjeBeJzZ8XHSzMLEBN+SHs+8z7cwMTHn9c55veJb9CmSkLhf/Cw0A0CvQDNAISq5HK/TZ8fG6D/rfv9GKMSVQJ5gQlMmOzW17vdLNEOQIchMjDFKzzvlxGRozQBgI9AMUAg+LjLv882Oja37/dvpdCWXo3qf0nBPzHm92ampwvR00uOhdk92akps8fBOM8aYnkhQMoNm6OBkGvr2zWh0eXKyo2aWJyc3o1EaoSEj6onEnNdLRmxUKut+P3XWrfv9dEBKwwOslkoLExONcrlRqWSnpijx8uQkH/JZOHRoMxqd83qTHg9rtTaj0XW/f93vnx0f33j1VQpk7uDB2bGxOa938803GWMbodDy5KQo1ML0NPU0AqAC0AxQC6qaN6PR2bGx7NRUdmpqMxpNejx80J7LYzMapVYOTQ2g1obYx8VTii4xaIbeTXo8lVxO7HyTb9VSaTudnh0fz05NNSqVaqk0d/Bg0uOhA9Jb2/PzjLGFQ4fE6QYbodDCxARrtTZCIcp2o1KZO3iQS3R2fHze56tevUriKUxPJ/ftK7z4IqVkjC3/4Ac05WEjFEru29col+nrKqur/FuS+/bRtwOgAtAMUAjqsCIN0BQA3kCZ83oZY5VcjnrMCD2REKcAdOw0a1Qq3DGMsXW/n/6/GY3yqWvUgOBO6jgwQxs/DlXu1atX+WH5ERhj89/8JmVmMxqdHR9vlMu0f+7gwfb5coXpaXIP5ZlaLfyt5L59YkvFECDpZO7gQWo/fRLLwYNmHwFg+EAzQC0alQqJwTB1eM7rrZZKG6FQdmqK9lRLJdopNkTEj/CxGerOMjMHb1XQp6jL7tOet/Hx7fl53pUnTkgTx35EVTDGFg4d4plJ7ttHX7GdTnNnVEslylLS46E+N64ZsSFiOCxjjPr0qFNxdmyMElOr7pP5DocOoccMKAU0AxSCBlQMG9XsNEQhDsLzsQ1ShaTTjDFWyeWoSSSO31DXnDh2wtqmAMyOjXWcAmBdM+t+/7zPx1otGkminXMHDy5PTtIwj6E1I9HMZjSa3Ldv8803qVHFEzcqldnxcX12tloqUU+aracFgIGAZoBaVEslGqtnNG5xq1lTLZVo3FtMKbZ45FMACD4Mw271v7V3YRkmNPMJb4YJzdY1Uy2VaOwkuW8fdbIZPpudmrKomfbD8sTZZ54hjWWnptBjBpQCmgFqwdsceiIx7/Px/h8yxLzPJ6qlUanoiQQtENB1QjNBEwrW/f6kx9PumGqppCcSG6FQx06zjVBITyRoBN66Zhhj89/85rzPx+eDkSFonpieSMyOj1vUTPaZZ+Z9PpqotnDoEO80o+Mk9+2b83rFuQAAqAA0A1SEOsR464EcsxmNzvt83DTzPh/NQNsIheRjM5xGpUKj/bTRB8UE2+m0YVKZ2GlGG8+SoTuLD8KztqVxaCKAPjvL99A8MZpNtxEK8c8uHDokPsdjOGy1VCK7zHm9+uzswsSEKJW5gwepd663vzUADgPNAIUgW8z7fDQKQl6hR174QD09wE/TiPkHZ8fH2wd1aNMTCWrxkJaoY43dWtWGquyFiQnyR/sEAbHTrH2+mUXEmWzOMXfwILWQAFAKaAYoRLVU4hrgUBeWuKfXR/Fp0KLjp6qlErUYDC0hexGfjHEImh2AwX+gINAMAA5Cs5ZpQMWhr6C2WtLjQVMGqAk0A4CDbIRCG6GQoz8fUMnlzNpqAKgANAMAAMBBoBkAAAAOAs0AMACtFiYQAyAHmgGgT+rXr99IpXavXGk1GqPOCwDqAs0A0A+tZvPjaPT9v/zLSy+8UNf1UWcHAHWBZgDoh1a9vv7887Ff+7WPnnxy59KlUWcHAHWBZgDoh1a9nnv22TP33JP69rd31tZGnR0A1AWaAaAfPtXME09AMwBIgGYA6IFWs0lTy1qNRu7ZZ2fuvvvDb30LmgFAAjQDgFXqW1vbH364e/lyq9HgrZkP//qvb4oraWKKMwCfBZoBwBKtZlN/5525v/qrpe9//8b8fLNaXfvf/z1z330fPP54ZWmJ0jRu3LiZze5eudKq1UabWwDUAZoBwBKtZvPjmZnzBw7M3HnnR08+uT03d+mFF849+OC7f/InW4kEa7WqGxv5H/94/jvfWXvuuWqxOOr8AqAK0AwAVqkWi6vPPPPWQw+due++1N/8zdpzz51/9NF3v/rVa2fP7ly6lH366bd+67div/qrmaeewhRnADjQDACWabV2L19e+5//eWffvujnP//B44+nnnhi8R//cfONN1b+7d/OPvBA9Fd+JfXEE/rbbzd3dkadVwBUAZoBoDfqup777/8+98UvRu+444LXuzw5Of+d75z99V+P3X//wt/93Y35+Va9Puo8AqAQ0AwAPVPd2Fh//vnzv/u7M3fdFbv//pm77nrrS19anpysrKy0ms1R5w4AtYBmAOiH+tbW5RdfTDz22Jl7773wta/l/+//di5dwlRmANqBZgDok/r2tv7221d+8Yvr773n3G8wA7DXUUgz9Xq9UCisrKwsLy1hw4YNG7Y+tpWVlUKhUFdpgFAhzRQKhaXFRWzYsGHDNuBWKBRGXaN/ikKaWVlZWVpcbDQaTQAAAH3RaDSWFhdXVlZGXaN/ikKaIQmPOhcAALC3Ua0uVUgzy0tLS4uLLczVAQCAfmm1WkuLi8u31tlTAWgGAADcAzQjA5oBAIABgWZkQDMAADAg0IwMaAYAAAYEmpEBzQAAwIBAMzKgGQAAGBBoRgY0AwAAAwLNyIBmAABgQKAZGdAMAAAMCDQjA5oBAIABgWZkQDMAADAg0IwMaAYAAAYEmpEBzQAAwIBAMzKgGQAAGBBoRgY0AwAAAwLNyIBmAABgQKAZGdAMAAAMCDQjA5oBAIABgWZkQDMAADAg0IwMaAYAAAYEmpEBzQAAwIBAMzKc0Eyz2VxdXY3FYkePHj18+LA2XAKBwKlTp1KpVLlcRiwuDgexIBanY7EONCPDds2sra0dO3ZsyGWrI4cPH04kEvV6HbG4LxzE4gSIpW+gGRk2aqbVal24cIHO8fHjx9Pp9NbWVqPRGPzIPXHz5s21tbVYLPbTn/5U07RXX331xo0bvR7ETbEwd4WDWGzH3bFsb28P4XuhGRk2aoYK2ZEjRzKZjAqDPdeuXQuFQpqmHTt2bGdnp6fPuikW5q5wEItziLHcvHmzp88qGMtrr73WXyx9AM3IsEszuVyOGqqXL1+2JWO2UK/XT548qWnaG2+8Yf1TboqFMba6uuqacNx0ahCL09Tr9VOnTlEsTpsPmpFhi2aazeZLL72kadrCwoJdGbOLnZ2dQCCgadra2pqV9G6KhbkrHMQyHHZ2dn7+85/3FMvLL7+seCy5XM7RL4JmZNiimYsXL1KHrAqN5XbS6bSmaadOnbKS2E2xMHeFg1iGRn+xNJtNpzPWBzwWR//U0IwMWzQzMzOjaVo6nbYrV/ZSrVZpYuXu7m7XxG6KhbkrHMQyNKrV6pEjRzRNszLa5KZY+gaakWGLZo4ePapp2tbWll25sh3qbi4UCl1TuikW5q5wEMswsR4LzWDWdX0IueoPGqHJ5/POfQU0I8MWzdDNwvAnL1rn7NmzmqYtLy93TemmWJi7wkEsw8R6LD/72c80TRvaEyp9cO7cOU3Tlpx0ADQjwxbN0GR5u7LkBPF4XNO0TCbTNaWbYmHuCsdNsdBTHWoOzBC3Zyx9A83IgGYMuCkW5q5w3BSLm6pmN8XSN9CMDGjGgJtiYe4Kx02xuKlqdlMsfQPNyIBmDLgpFuaucNwUi5uqZjfF0jfQjAxoxoCbYmHuCsdNsbipanZTLH0DzcgYlWbK5XLxFhY/UqvVKH0fS3wPpy7jOSwWi7VazUrKPqaBDkEzuq675tRYPCO2MJyqWbVi1l8sapaxvoFmZAxZM9lsNhaL0bIcIrFYTFLg8vl8OBwW0weDwWw2az2HjtZltVotk8kYcmh2EF3XI5GImCwQCKRSKetf55xmarVaPB43nJ14PC65sJU9NeVymY4sEg6HO+aNToocK0E5WjWbFbOOBxlmMespFsXLWN9AMzKGqZlUKqVJ6Vh02isLsXRazKFzmtF1PRgMdsxee+J8Pj/MWHoKR9f1dv0TgUCg4+2wsqcmn8+bxdIxb8Vi0Swxx0od7ZxmJMWs/SBDLmbWY9F1nVYYaycQCFy7ds0sG0OLpW+gGRkj0UwsFstkMtQEzmQy4vVjuKnhHwkEAslkkj6STCZ7uviZY5oRq+ZwOMyDymaz7ddArVbjiWOxWD6fp/D5TttjsR6OmDe6c6co+F1kIBAw9M8oe2rK5bL4J+UlKp/P85JmyBvXTDAYVLA102sx41X5cIqZxVjEjJmVsWq1Kn5k+GWsb6AZGUPWTCwWa28d12o1XtSSySTfXy6XeSEz3E1ns1kzM3XECc2IVbOVI/PLw1A18EqkvSrviBOa4feMhryJp0Z8S+VTw2Npr4O4gQKBgLifa6anbiWzr7ZXM04UM0Nt3hHbY5GUsRMnTnQsY3Tk9oZONpultzRNs/ILbNDMiBmmZiR1KG/mRyIRvpNfMB0vfl5qrZQeJzTTUwYYY7yyaP878EjtvWVm1sKp1WrcGe15E43SnmEFT43k7yzmTRwLVFkzvRYz3mJod4lDxcxKLLVajTujPWOiUfhxRlLG+gaakaHIhGZ+nYua4ffRHQcGdF2nd8PhcNfjO9EzQymDwWDXxGJuY7FY+7s8/I7vGrBdM9zxZt8ei8UoAV98UOVTo92i47u8H2ZPaKaPYkZHHmYxsxJLPp+XZIwJZezSpUu0hzdxOo7Z8EjD4bDFhhQ0MzIU0QzvaRE7zeT1hZUEHNvrskwmQyktznjh6c0qMnrX0JnTEds1w2tes7y1J1D51PDWTMe5i/weWezQU1Yzthez9kaDGfbG0kcZ491iZkfumqCPWPoGmpGhgmZqtRqNzQYCAfHi71pV8SmbXR8LsL0u4zdfFmfx86vILA+8cux6qOFrpv0uWOVTw7tTwuFw+9mhkiY2mpnCmrG9mPEuNdU0UywWeXOHDtXVIqdPn6YEHZs7/cXSN9CMjNFqplarZbNZPv/HcMvG6zKzQR1el3V9yMuhW2ZqfGSzWfEZhY6zknh9YZZVJ+pli+HwKkBsSoq0d2mqfGrEmWb0sAjPJI/U8EcWA0zdIpvN9vpUo+2a4cWs1WrZW8xsrJp70oykjNFxIpGIQTNmExa4ZjY2NuyKpW+gGRmj0ozhGZpYLNZ+SfNLwqzHYIR1GSULBoNmTzOEw2GxCu6aVSdisRiOOJ1XnoBrRuVTwxjTdV18oI+mw9IXBQKB9jxLnpuJRCLWZWO7ZiiZ4sXMSizcIsFgsGPKds1wi1y8eLHjMaEZOdBMB820X/y8ozkYDLbfNfOutuHXZYZaKRgMxuNxugUW7zfFAXCVNcOELruOh+UngmtG2VPDKRaLHZ/Q7PgTivLHM82eTh0kFotV854oZhaVyfvrupYxOpRYxtobNLVa7ZVXXqEE0ExHoBlWLBbpghHXnmmfUM9rK+r9EJ9KEyuRUWkmEAi0f7VYO3B3Kq4Zfklrt5RPf+pUKiU2C7hmlD01hDhEYehr0jr125TLZQrZsEeM0d5HmnrSjOLFrNfpDF3LGB1KFIm8jEEzHYFmPoP4DKBhhFCyAgoVPvpP1yrAIc0YRpI54noHtEdxzTBh5FzydxYraDVPDRNmLYplqVwu83ELzfI6JeKjkcN/1mSvFLM+ngGyXsbMFqcRP9L1aVNoZsSooBlm8gwgf6u9dNJae07MzrJywK7Xf3s46muGMSbevxO0RqHZNFkFTw377OyM9gB5Pi2uDcxjt2KmIWtGLGZ0KMU1w2wtY07MmusbaEaGIpph3Z74Y8KK7obvNbsIReyty/jjh5Kv5pcEveQ3nh3HBtitibb21susr1PDf6OBT6Lt+EijiDqnhj9qamYFs7VYzOha14vYWzVbKWaGWb9dixnvhhryhGYDkjJm1gPWXsYMUwYkQDMjRh3NWL/PIniFYu/SuRZjoWSSpynNNCN/PFMFzbTD7wAsph/hqbH+DJAVbfSa3qGZZpKnKc00I388c+SaaYc/82/xOHxZAXvLWN9AMzLU0QyvyyxqhjelrcwCsl0zPLcdn5trXyOE11Ydb6Kt3LdyhqwZHouVFUqIEZ4a2zXD+9mGv0ALc6CY8RbA8GORwNc0489mWsyeZuEBIAbNjBxFNMMvGIvH6aleZg5oRr6uH6+bxKud9nRsAHVdI0RkyJrp+sSfgdGeGt6QMltOjf+pzZ4T7Jg9izm0vWruo5hJGkAOFbPBNcPLWNc5Y4ToS+tTDwyx2Pvb0tCMjF410/FSt1iXRSIRs6qKlzMrPebiHKdBHmgYJBbJSvhmT42YVVhi+r5XzjfL9oCa4Xm22JQZ+anhq01rJuMT7adG13WzylScUtz3hOaO2e516Ux7i1nfi+d3zPaA9XUfZYwP/ltpyjBoZuQMUzOUjBbJEH9sio/KGNY0I8TEuq6nUqme5pgStmuGCXea4oPl4g/KGi4bfptPOaFqS3xe3eJl5pBmxPHVWq0mnhfDo+YcNU+N+FtYYjbEOc3in5pcwn84iycWwxnk57MG0Qzrq5jxARjbi9mAmpGXsY7zkiVlzGx1gEFi6RtoRsbwNSOhY91klrinnlYnNCM+7tNOx6pZ8jPVFu+Xe4qlp3DM8tZxAUrx4AqeGvERGfpBTPFMGU6NfAkAbeAfA+6Y7Z5+1szeYmblN83MYhlQM32UMa5MA4OXMWhmeAxTM9lsVrz+RSQrR3VMbHGcgONEXcYYq9Vq4k/GcpLJpJkzstls+1ONkUjEomN6iqWncNqrAMO6k2YHV/PUiLe9hogMKWu1muGpcjG9Q8rsqY5Tp5jZrpmuZaxdM3aVMWhmeAxTM0StVisWi5lMhq+DKx+QyOfzfNHcfD5vcUV0Aw7VZQStM83D6XolU3cBpc9kMrYsA2yWbevhlMtlflIymYyVK1n9U8PXNKIcyk+Nruv8PNLSJj19F3NMM4QKxWxAzShVxqCZ4TF8zYwER+uyITPMKQBD4PY8NfbWcU4wtCkAQwCaGTHQjCGlm2KR7FeH2/PUuKlqdlMsfQPNyIBmDCndFItkvzrcnqfGTVWzm2LpG2hGBjRjSOmmWCT71eH2PDVuqprdFEvfQDMyoBlDSjfFItmvDrfnqXFT1eymWPoGmpEBzRhSuikWyX51uD1PjZuqZjfF0jfQjAxoxpDSTbFI9qvD7Xlq3FQ1uymWvoFmZNiimRdffFHTtGazaXfubOPs2bNa2+oUro+FuSscxDJMOsbSsWqenp7WNK3RaAw3gz1w7tw5TdNWVlbEndDM8LBFM7Qk39bWlt25s42TJ09qmnblyhVxp+tjYe4KB7EMk46xdKya6afSen38c5icOnVK07TLly+LO6GZ4WGLZmZmZjRNS6fTdufOHqrV6uHDhzVN293dFfe7PhbmrnAQy9CoVqtHjhzRNG1nZ0fc37FqdlMsfQPNyLBFMxcvXtQ07fjx42r2z6bTaU3TTp06Zdjv+liYu8JBLEPDLJaOVTOPRc0+QB6Lo0NK0IwMWzTTbDZfeuklTdMWFhbszuCg7Ozs0BqCuVzO8JbrY2HuCgexDIednR36QZf2WDpWzc1m8+WXX1Y8ltXVVcNb0MzwsEUzjLHV1VVN0w4fPmzoAB0t9XqdumXfeOON9ndvh1iYu8JBLE4jj8WsalY2ltdff51iac8zNDM87NIMY+zChQuaph05ciSTyajQFXDt2rVQKKRp2rFjxwzdssRtEgtj7N1333VNOG46NSrHcvPmzfYEkqpZwVhee+21/mLpA2hGho2aabVa58+fpwTHjx//6KOPtra2ht9du7Ozs7a2FovFqBgdP358e3u7Y8rbJBbmrnAQi+1Yj0VSNSsby/Xr1zumhGaGh42aIXK53LFjxzQFOHz4cCKR6PqrXLdJLC4LB7E4QddYulbNboqlJ6AZGbZrhjHWbDYvXrw4MzNz9OhRmuI5TAKBwMmTJ+fm5m7cuIFYXBwOYhl+LFaqZjfFYh1oRoYTmtkrIBZlcVM4bopF/XVlrAPNDA9oZtS5sAc3xcLcFY6bYoFmzIBmZEAzo86FPbgpFuaucNwUCzRjBjQjA5oZdS7swU2xMHeF46ZYoBkzoBkZ0Myoc2EPboqFuSscN8UCzZgBzciAZkadC3twUyzMXeG4KRZoxgxoRgY0M+pc2IObYmHuCsdNsUAzZkAzMqCZUefCHtwUC3NXOG6KBZoxA5qR0Z9mAADABUAzwwCaAQDctkAzw6BXzQAAADAAzciAZgAAYECgGRnQDAAADAg0IwOaAQCAAYFmZEAzAAAwINCMDNU0o+t6JBLRNC0QCKRSqVFnZ1CKxWIymRx1LmwjHo8Hg0FN04LBYDabHXV27IEHFQgE4vG45Iew9grZbDYSiYw6FzaQTCYjAipfStCMDNU0Ew6H4/E4Y0zX9UAgUCwWR52jPqnVavl8PhwOu+OCJ2KxmK7rjLFisahpGv1/rxOJRCiQcrnMi9/ehU6NjVN1R8jp06fj8XjxFiqXN2hGhlKa0XVd0zR+O5lMJmOx2Giz1DfULAsGg27SjEgkEnFBc9NAKpXa0+dL1/VgMJjJZFyjmb1SxqAZGUppJpvNhsNh/jKfzweDwRHmZ3D2erUlIRwO75UqwCK1Wm1PB0X5z+fz1KBR5KIeBGhmEKCZzhgqZbpaRpifwXGrZtzUacZuNT33+nBgOBzOZDLs1tlR5KIehNOnT1N/QCwWU7z/HJqRAc04iis1Q3fNe7c/s51arVYsFrPZbDAYVLw6MyOZTPJRJddoJpvN0qhMKpXSNO3SpUujzpEp0IwMaMZRXKmZeDweDoddMCOrHTLNqHPRDzQ/08AeVWZH4vF4LBZTpKZqB5qRoZRmaGoWf2kYqtmLuE8z8Xg8EAi40jHMFXc2zEWtGRG6lJQNCpqRoZRmyuWypmnlcplexuPxvT671GWaIce4ZkiGMWbwZSqV2qOtGRF3aMZwak6fPo3nZnoCmjGFOmSKxSJNyty7NVq5XCbHBIPBVCrlgu4LqrxisVhKYNSZGpRisUgzgKnIBQKBfD4/6kwNijs0Q6eGhmdSqVQgELhx48aoM2UKNCNDNc3UajWqndWfWyKHNMPZ07EQhojcoZlarZbJZGKxWCQSoScBR50jG6AzNepcDIrh1PBODjWBZmSophkAANhzQDMyoBkAABgQaEYGNAMAAAMCzchQSzOtVqvZpI0pkiUAAOgGNCNDHc00d3YqS0ubkcjVcLj0+uvb779f13XIBgCgPtCMjNFrptVq7u7uFgrFV175wOc7/+ij8YcfPv/oo8k//dOVH/5w+/33m7u7I8sbAABYAJqRMRrNtFqtRqO5u7t7+bL+zjv5n/wk/bd/e/7RR6Of+1zsC19466GH3v7t3565++6Zu++e+8Y3iq++unvlSqvRGGoOAQDAMtCMjOFrpnHz5vYHH1yens4+/XT6u99996tfPffgg9HPfS52//3x/ftnf//33//613M/+tHi97739pe/fObee2d/7/cWv/e96++913LpAicAgL0ONCNj2JpptW5evLjw93//9u/8zsxdd0U///lzv/mbs3/wB+nvfveS37/6n/8Zf+SRxB/90cfR6M76eu5HP3r3j/84dv/9Z+65J/MP/7Cj8PqsAIDbGWhGxkg0s/T977/353/+4be+tfKv/5r/8Y8/PnNmt1Bo7uxc+cUv3v7ylxN/+IcfR6OtRqNaKulvvbX4T/909jd+4/xXvrIZibSazSHlEwAALAPNyBhJp1llaWkrkbi5utool/nc5VajUThy5K0vfemC16vfWjGz1Wxev3Ah+Wd/NnPXXZf8/la9PrR8AgCARaAZGaOaAtA+U7nVaFx64YWzDzzw/te/fv299/j+RqWycfToBz7ftVgMrRkAgIJAMzJGP6H5Fq1GY/3558/cd9/cN75RzmTEt+rb2zcvXqxvb48qbwAAIAGakaGUZnL/9V9n7r039cQTN3O5trdHn0MAAOgINCNDKc1kn3565s47P3ryyarD67FXcrlqqWTvMQ0HrORyjUrFenoAwN4FmpGhkGbq9ZV///foHXdknnrK0f6xRqWS9Hh6reUL09Prfr/Zu5Vcbs7rFfcsTExsp9OSAyY9ns1otKc8WEGeT0PKhYkJs7faN/7uwsSE+HIzGu2YvjA97USAACgINCNDHc00d3eXf/CDN3/5l5cnJx1dYCY7NTU7NibZxDqU2E6nkx5P0uMxM8e630/bwsQEbUmPZ97n4y83o9FqqcTr33W/f3ZsbN3vt7dqlueTZ4a2Oa836fEYdlJKQ5boL8b7LQ2aWZiYyG2WHtAAAAZhSURBVE5NtQeSnZoy0xgALgOakaGOZurXr2eeeip6xx0rP/yhc0vLbEajSY9H3p1loJLLUctDTyTMmkFzXm+1VKrkctvpNG3zPt9GKMRfVkslUTNJj2d5ctLeFkDXfPLM0Jadmpr3+Qw7Ox55O52Wa6bjB7fTaWgG3CZAMzLU0Uz16tWPnnxy5s47s//xHw5phhxTyeUMt/B8a+9uoro7OzVFL9f9/nmfr/LZGQp6IjHv89H/uS3mvF5+j2+ohfVEYs7r7Ul1XemaT1FytFGDxrCT5NSoVET3bIRCaM0AIAGakaGOZnbW1lLf/vbM3Xfnnn3WIc1sp9PU4JgdG6MKdGFiQk8keGVqqBapWUDu4bMG1v3+pMejJxI8mdjdRH1uhtpcrJRpZMisv66/uKzkczudFqWSnZpKejyGrM55vWRE8jG377zPB80AIAGakaGOZsqZzAePPx77whfWnnvO0fWYuU4alQoNolDDQuzkaVQqVE3zLiyxbuW18HY6zf9Pb3XVzMLEhJlO+H7JoLqhe816Pnl0jUqFHEBRU1OM/s+7v2iciWeMGjdiCPQVYiehfOvzVAGwR4BmZKijme0PPnjvL/7i7AMPXHrhBYc0Q9Ui3WXzGpA6tag1Q2MVvFdNHN4w2KJaKlFLiJoIFjVDwyG8LWXYuGbEqQSSjSezkk/+MunxzHm9vJmSnZqqtD2lJH6kHf4VPAOzY2PifIf2rfdzBcBeApqRoY5mthKJC1/72rkvfjH/k5+0ajX+a80WNyvPb1K1aKhnxZlXtH/d728fPzdU3xyxocAYa1cIdSgxxgrT09RumB0b61gX99FpZj2fHJojQLmijy9PTvJBHR5F+9Yolzt+RSWXmx0f5+8CcBsCzchQRTOt1rVYLPHYY+cefHDpX/7laih0NRy+euLE1RMnrobDn24nTpROnuQv+f83I5FyJtPc2bHyVXy+b6NSmfN6eXeT4ekQA5Lq26CZ9nnD9MFqqUR9U107zQZBrpnNaJRaVJvRKLXk+Mw33nVmmjeTsRn6ONox4HYGmpGhjmY+PnPm/Fe+cuaee9566KH4I4+cP3Agvn8//Rt/5JFPtlv/P3/gwCcv9+8/f+BA4rHHlv75n29ms13bNNVSaXZsjDcCNqNRPghhl2bMWjMcG1szPeWTMWbo2jJMCjCzAv3RzDRTLZU69gFuhEJJjwerBIHbAWhGhiqaYaycyXw0MRHfvz/+8MMkj09cIm7795Npzh84EH/4YfrPp5pZXe1aqdEQSMdanneatY9VMDtaM5yuYzODINcMTRmgBDzb1GnGG1sdA+Qztrt+BWczGkVrBtwmQDMy1NFMc2envLi4GYlcfe21z3SUfbbT7JNuNLEz7cSJzdOnLXaaGZ4I4RsN5menprbT6Y61rXXNGN5tbyR11AmN2XTNf1fM8kkTzGjes2FmHX+LZEPpxTXZDA0ds6+gB1T5/+d9PovL3gCw14FmZKijGaLXkf+epgB0ZM7rpSHuhYkJyeBEV80UpqclC9iI1bRBJ/wxGlsqZbN80jRu0gBNhTA0s6qlUnZqaiMUope0HA7fDM8JdfyKzWjUELK9j6ACoCzQjAzVNKMskkWdq6VSTyvEGOpommY9UOY+e7Suq4LSN3bsG+SIIy4GW9D0ARvyCoBbgGZkQDMAADAg0IwMaAYAAAYEmpEBzQAAwIBAMzKgGQAAGBBoRgY0AwAAAwLNyIBmAABgQKAZGdAMAAAMCDQjA5oBAIABgWZkLC0uLi0ujjoXAACwt1GtLlVIMysrK0uLi41GowkAAKAvGo3G0uLiysrKqGv0T1FIM4VCgSSMDRs2bNgG2QqFwqhr9E9RSDP1er1QKKysrCwvLWHDhg0btj62lZWVQqFQr9dHXaN/ikKaAQAA4D6gGQAAAA4CzQAAAHAQaAYAAICDQDMAAAAcBJoBAADgINAMAAAAB4FmAAAAOAg0AwAAwEGgGQAAAA4CzQAAAHAQaAYAAICDQDMAAAAcBJoBAADgINAMAAAAB4FmAAAAOAg0AwAAwEGgGQAAAA4CzQAAAHAQaAYAAICDQDMAAAAcBJoBAADgINAMAAAAB4FmAAAAOAg0AwAAwEGgGQAAAA4CzQAAAHAQaAYAAICDQDMAAAAcBJoBAADgINAMAAAAB4FmAAAAOAg0AwAAwEH+HyYY40vKZrqQAAAAAElFTkSuQmCC" alt="" />
要得到一个数组元素的值,只需引用数组变量并提供一个索引,如:
第一个人的成绩表示方法:myarray[0]
第三个人的成绩表示方法: myarray[2]
任务
变量myarr保存4个人的姓名,现在看看第二个人的姓名是什么?
1.在右边编辑器的第12行补充代码,显示第二个人的姓名。(?位置写代码)
?不会了怎么办
myarr[1]里存储第二个人的姓名
代码:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>使用数组</title> <script language="javascript"> var myarr=new Array(); myarr[0]="小红"; myarr[1]="小明"; myarr[2]="小亮"; myarr[3]="小川"; document.write("第二人的姓名是:"+ myarr[1]); </script> </head> <body> </body> </html>
使用数组
3-6 了解成员数量(数组属性length)
如果我们想知道数组的大小,只需引用数组的一个属性length。Length属性表示数组的长度,即数组中元素的个数。
语法:
myarray.length; //获得数组myarray的长度
注意:因为数组的索引总是由0开始,所以一个数组的上下限分别是:0和length-1。如数组的长度是5,数组的上下限分别是0和4。
var arr=[55,32,5,90,60,98,76,54];//包含8个数值的数组arr
document.write(arr.length); //显示数组长度8
document.write(arr[7]); //显示第8个元素的值54
同时,JavaScript数组的length属性是可变的,这一点需要特别注意。
arr.length=10; //增大数组的长度
document.write(arr.length); //数组长度已经变为10
数组随元素的增加,长度也会改变,如下:
var arr=[98,76,54,56,76]; // 包含5个数值的数组
document.write(arr.length); //显示数组的长度5
arr[15]=34; //增加元素,使用索引为15,赋值为34
alert(arr.length); //显示数组的长度16
任务
在右边编辑器中,已创建数组mynum,并赋值65,90,88,98。
1. 在右边编辑器的第8行,使用length属性显示数组长度。
?不会了怎么办
使用length属性。
代码:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>数组长度</title> <script language="javascript"> var mynum=new Array(65,90,88,98); document.write("数组的长度是:"+ mynum.length ); </script> </head> <body> </body> </html>
数组长度
3-7 二维数组
一级数组,我们看成一组盒子,每个盒子只能放一个内容。
一维数组的表示: myarray[ ]
二维数组,我们看成一组盒子,不过每个盒子里还可以放多个盒子。
二维数组的表示: myarray[ ][ ]
注意: 二维数组的两个维度的索引值也是从0开始,两个维度的最后一个索引值为长度-1。
1. 二维数组的定义方法一
var myarr=new Array(); //先声明一维
for(var i=0;i<2;i++){ //一维长度为2
myarr[i]=new Array(); //在声明二维
for(var j=0;j<3;j++){ //二维长度为3
myarr[i][j]=i+j; // 赋值,每个数组元素的值为i+j
}
}
注意: 关于for 循环语句,请看第四章4-5 。
将上面二维数组,用表格的方式表示:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUAAAADSCAIAAAC0K44BAAAgAElEQVR4nOy9+XMdWXYeqP9kwopx2+q1NhaJ9e0bNgJcqrrV3VaEpVFY1tZdXTtZ3EAWa+3V3ZJnQooYx7TtGUvWyFLYHilGrcW2Wmp1VdfGHVyKIEgCeEu+zLx5929+OJkXiQfgsVBTJEAiv8gAky/z5bv33PPdc+659578Oeww2NSxMUzq2EEgsWgnH/rHmPiwxkmNbtNbWdgdByEEAGstnXQ6nddff/3ntrpU9xoZgftgfQLbjMDbApxzOvF9XykFoN1u7zgCZ+iDDQi8TreXEfjeg3NurQVgrSUCA8gInGEVNkXgvl5Mhk8eSikppftvGIYZgTOswiqq9iXwnYYhGT5JON6GYaj1iuuTETjDKvQyMyPw9gA5z2kYY7AjCWzWHCvYQF13ECyM/Wihu49+Z4ZPBD3+sxAiiqKMwBmBV+Ej09JkBL6XsNaSEdZaM8bI/OJjWGAX/kIS11ZKpZ3ybQ8Dxa2MYBURmORC9bJAxCXFVztBRASm6B+JjG5Od4QPHEzHW6Z+jappNGAhBcU/AcAYY63mnD3Y02zGGMYYEjlwzknPoyjCeppgrdVak6oopdY6vXcDH8cCc86llPemfJ80jJWRlREUN4JJETlNJVggZNyPpLTQANfQKRXtdrtCiPuz4h8RxF4FmHa7SR8FPidvxBoIobrdLt0JKGPFg81hh06nQyfEYWstY4xzzjmnrt8ZNmcbARD/7yo+vgutlOKcR1F0Xym0gVWwElbBKmtU2otW2rqJUGmhAD+S2kBKGUVRuq+9rzyOTcEAyhrhxGIBIa2QUHplTCGl5FGoJEvufADhZlxdu2utwzDscz8tkKJ7iMZpMt8lbJrA6U7F+RL3j0tpYCSMgFUwUvNIikgrwTlTylggCCNhrDAIhVbJVGe6dkEQPLjsRWxXdWQ0B0yz2SbSEnuVhh9wm9ymZEi2eqvLfFfgBk1SStJ5GjAyxoiojqJaa1KJNGmDINi+LrS1NgiCIAgcmdMD4+0NI5kPK2ElDzuS+W4kDMACXSY0wBUUoIAuExZgjDHGqLe6b8cOHxGm1bwFSMdMCzQ7IQUFlIWQ1gI8CiPWFcwD5INKYADOPQbQbrd7rnqeh8RQB0EQhmG326XRL4B75pl+HAKn6XrPeppPCLELzf02NIdVkvmvnD61Z8/jQ0MjhWL5peMnNcAUPCbJAnOxUllniu+fDmuzMIAE+B/8h39XLhf37p25Pn+LqMtV7I8IqZPbpBbBA0xgp9g//elP9+zZ89WvfnVgYGBgYOCll15yQ+JWq9XzLWOMW7R8D7BpApMSu24Gq1dmbnuYoL0Ey8kIe83F77z52sED+44cOQzge//qB7uHRk+//k1irwAUOZBKIam47/v3YGCzdTDf/dZr05PVocHHBwf3fPnLX52/cTvk8bJnadD1uQWU5IC0ij3AFth11pzz3/u93/v1X//1hYUFAC+++OLMzMyJEyc6nY67JwgCsr0U4SPmu6XLdxUfMwp9+vTp2dnZ559/nj65f4wwWWAlgg6svP3hhS8dmB4cGP2LH/2NNuF77/1k7+S+Uml8ickICASUBoDTp08/++yzx48fRxKioJ7rQYSBZLD8v//1n+dzQ7XqRBTFA4og0hrohtoCx0+89Nxzv/36yydg1QM6V24AI+J5MvOHf/B/Bb4HGK3EH/+nPx0eyTXGJqQyFCDwA2aBo8dOHDp06Nvf/rbv+/QIZ6XvKu5M4HTMxk380jj+hRdeMMbQ+f0CJXS8x1V4F9/+UaO4p1R98r0L88Di1Qt/+cXxA9Pjv/R//tV/X6CtNhqwEEIYY06fPk229/6q7yZhYCRE90//+N9MjpVm9n7lxgInZySQUgHNtrIAwIRofvu110TA73cCr7dox8AqaEGjrajbguU28mA5jPyjP/nPuepEaWx6oelToEQDkbLSwgLHjx+XkrwSoyS/B+5JPwK7viSZ+gOAI0eOBEEAIAzDQ4cO3dXC3RVYwEKyEIb9j//n3zYKj+/J7fvxu5eBD8Pln/zK9FeGH5v4/T/7i9uABmYPvRyF8XjmqaeeohNjzP3jcWwWBoLBBD/6s39XLQ0W81OLS1CAr5UABPDS0deFgLaesZ0XnnkW5r5frbYhga20Ikx4y6S3COlZER744leKEwf/5TdeDC2agexE5tlDR4nGUpkTJ07ET4BJJinvLu5sgYnGxhjf91955ZXXXnsNiRU6evSoW61yv0AKCwsrFXT4J//2e2PF3WN7f/ndCzeFvBh573yptr+ef/KPfvwP14FX3vj+sednqWEZY6+++qpzPR5cGFgO7f+HH35/erK8f+aX/AAKkECbh984fOj4yTcjbgAGBKeOnTT8QSawCDqwHJZrfxmGwbDf/9ffL9UnRqqTx179NgcE8PzRU6de+yZT0ICxePrppwFEjGJ7xu/edS96QwL3zFkrpWZnZ1988cWnn376jTfemJ2d/frXv56+ehfL+Ekj9qItv/L+X083cpX6l//fv3kbWLhx+a8OVqZruQN/+g8/+83TLz/17NE3T3/npUNHjhw5Qj0rsff27dtbXYO7B8Pat2GDP/sv/35mqlbITSwvGQ0o4PCpE9/93d89euLVbzx76OTLh44cewbSPrAWmDhsBIzk3hIMh2Hv/PiviqNDxWrjl3/jGxy43Y1e+db3f/u5F188Onvs5Olnn3vhm9/6jnsCj8Iw6G6xBaYRbxRFjp+HDh1644032u02+ZBRFFHw7f5ZyAEQgaWFld6ts1O1kd2DjR//w1lg8dy7/3VfZe947YuXvbAFHD352ovPHdPapsPOFBFYWlrauuLfVRhYDhv86f/9f1RLo+XiZNeDBiQQGfVrv/2bp155Uxhw4QEcBsyXDyqBRdgFZPPWPCyH8P/2L//swGStXi58+Zf+OQeWfcEBBXztmRdeef3bGhBSSxXrSddr37OUTBsSOL3ol6wxWZ7Ey4fWmoh9f7nQvh8CCLohrOLdD//1918rV/e9cPgUsHj6xG/tr80cf+mNDtACFDB74jWSgQsH0ALSLSz/XYaB5VZ6f/SH/3ulnDu476vtltaAsPHKlqeefUEDgAzCNuyDMIW0EYE1D/32MqyEZO//w9/trRf3T1R/9Z//EpNGAJGFAJiCBJ47dIRmyFttD/H8kzFa0nG3y78hgZ2aEnvJ8tCKf9pykV5r4vT7fgELBKwBfIB985u/WyzV9x8olgsPnTrycqelOBABPrfWQiXdqhv93l/jhU3CfO/br07Uc+XC4PTe8XJhbNeu3NTMF//2J2+FIt6kpYGl5ZuAicL73vxi/U2jZDkVoFi3DSt++Z/9Yq04mht8vJwfKVTqw4XK9MEvvfrN74bc6GTlvNcN7Opw7xZbYABuqpo2DDpP0hhDrKar99ekKHVAMBCRFKwpWJPkzMUSECgOGHhRRKs4pIFNLaNzNb2/qrwZKICLcBmQgjMa4gahTHZ3WA1joC2MUgoWd9/A3HVsRGApIkDFe9esguawEjAWUEAorUq6MyYVWeCuHzuq8f4kyWHv+rL5nbmh37Ubp7EcTHJuqTmNhVHJSqydBAVwgMUZZGkX4YqTaSyUhbLpjFkPJtZkfbCKls3bhLfbJPHDTiMwuUZONSXAoQ00qHniTItWwSpawPDAquj6UACjjmxFMW2awNxCrhD4QcbazC2GCLzusVXYoQS2FtZC06J8LUEOISDiBVgSRpIxeoC3Dq6HhMDGKaZJ2WFjwSy4JQE+8BS+H7ADCSwtjLXQsS2W0BxKwmCFsYpDcQVEO5nABnF/t+JLG4vAgmUE3j7YcQS2CYETD1lBM0gJDQWEgKIF/ZLtYALLhMAKkCk3UVn4FkHivzz4BN7AT94wKeK9xw4kMLdQGs7eKqgAksNAxARWkAERONzpBJYxgeMVVwrwYgKbHfFqlXXGujSsyAi8RVhF4IgIrH1IDg0OBERg4YMHKv7vjsJaAvPVBG5b+NZC2wecwBsGq9Yh8FbSeAcSeGUMnLjQAVRsgaMVm8z0DnWh+Tou9AqBfSCwgH7Qx8Abh5rXj05vVTm3J4E3ktEncqxke7Lxb0nYOCm0BiwMpa20blbp7pZnWwmH5KNSv6VW/7QEJO6szQ+MfLDm7/Y6diCBt9uRySeTz8c/tieBM2TI8JGQEThDhvsYGYEzZLiPkRE4Q4b7GFtI4E8waJEhww7FVhF4LW/V6gmMDBky3BlbQuCYtBYyeUWlAqSFAJTdYQBWXoRHaU/cCywz2OSV1rHeGONeILbV5brX2CghzJYRWBtO1LUQ2kTGcm0o09AO9KLNR/67E6HjxB+ZfFZAL1QQQmwlgeOVevHBaRGftXpHHYAxVhijtOGJWIwlOaz9u/MOraU2XGtprLCW1rDvRPkwFiglpORaS5O819pavYUutAIkFz7AhexK5UvlKx0kI2GzY/5SL6ZoBCFV6D5Z7687tkPJ76l83F+bjLZ2rHw4Z3QuFdsyAgsZBmH7zNl3bixcnrt85uqHZ+euvH/h4nvnL7x//sL75y98sEP+Xrj4AdX6zNm3L185//c/+ZvLV84ncnh3zV93bH3J783fn73zk7nLZy5eOnPm7NuX5s5evPT+B2d+du78OztNPmfOvnv+wvtnz713ff7yxUtnlSYOy60iMHWZ8srVc0oHkWgBDGDKdOPdMDvl4BYRDR+0CQF+Y+FyMprY6NjyMt9T+dy6fY0qrnSQFtTOlE/Eu0qzy1fOK80AKVW4ZQQWMlCafXDmLWOZUB163Q7ALKIddXDhUedFQjh/8WcA09a3CDc4tr7M9/K4cPE9oToWIZdtEhSd7DT5pHuxy1fOug5rywisTQTIS3MfAFwqn4qodLDlndw9PpRm1BIGAcDOnn+L1HQ9e/LgW5g1B79w6R2LEGDGkkwobiJ3mu21EIi1RZ6/8C4xWZt7YYEpZAUgvS2aJoHlhYvvJW6k1FomN++og6ZJlEUEsAuX3iY3JIlY9HZ8W13ae3zIC5feBkhZIyB+sau1NpGGTEWtelTuPj1UqpVXkFTZGCsuXjoDSLJ5d5vAZlVRUqkNKCfzhYvvAYyCiuk3ie8gWGhtAUNv20kR2NDV1ZkvzIbPeTChLlx6G/ABrg0HYA1gkbzSx6k7gK1O0PyJoZe6BFdlY8XFS2czAm8bZATuh4zAMWxc54zA2w0ZgfshI3CMjMDbFRmB+yEjcIyMwNsVGYH7ISNwjIzA2xUZgfshI3CMjMDbFRmB+yEjcIyMwNsVGYH7ISNwjGQ/sAHUT9/6O1rKcmL2UEbgrUZG4H7ICLyCZrMJmJu3rne8ZUA+9Y1fnz15OCPwViMjcD9kBF6FKAoB9dbbf9/1mwA/euz5jMBbjYzA/ZAROIYbA/tB+/yFD2gMbBFlBN5qZATuh4zAKwjDkJbNX7l6MeJdr7uYBbG2ATIC90NG4BgJO4yFJAsM8CBsZgTeamQE7oeMwKsQBF1AXZo7R7tQlQ4yAm81MgL3Q0bgGG4aScjw8pULgAzCZuZCr4B+ncTEOXdpeAEYYygZL/11eZvTBeac93++lLLnk263C2w7AkspKfdyuswUQQmCwF1yiKJopS4AACGElHKz8twAW0ZgV9N0UXuuknwYY64WdBvJxN2WFg5hrTKknw2YtDppba3NthPeCfTrUsq07Hzfp5N0+3U6nfS36FIYhlgJFa4Puso5dw0chuF2I3D8M8YEQeCKrZRyEmg2m3SyVgu11lEUkdZ+PHmuwdYT2FXTGNPtdkksVBFrrasREh0gPnueR1+kDwFEUUSiuJOSaMDQt5QyWtvk86QUGYE3grMSURSFYejKI6WkxkirmpQyrYV0Qx87rLUOgsB9he5XSm03AmutqWzWWs65K7DWmjHm/quUop5ISklySzdfu93GJuW5AbaMwOmapt0HQrrzok6ciE1/iaLGGKck7n66s4+qc84Ak36+UkZKnS2lvAMYYyS1dDG01mEYru0y0y0qhHC9bB+4x3LO027qdiMwId03kfmlF3zQJ51Ox0kgbanCMHSi+Njy7CnIFo6BaSzg/ut5HnXBrVYLgLWWjG269d39t2/fTj+KyOz6976qHvMlDEMhVlohI/Ad4LSKRixCCPIVSehRFJG5oNYiX5HcJ9dDb6yFoCdord09NITehhaYjKcbxBpj0naSrgJQSoVh6MYCbpjnjPZm5blBcbaSwGmzuVEJqbKcc6pXGIb0CfVr5LNo7ewnhBCkPBv/rBEiojuVMgB8P4wikRH4ziAbglQQoicG0+Mhpy0J3dOfw67nttZuZwtMZVNK+b5PAiEFNSYOrhhjnNkRQrgBYc8LuDYrz/WwlQR2bcQ5J2NLLejqmx5TINWDr62Xexube8hGECISIko/gSqbEfgOmJqaeuihh8bHx6nf9TyP2sk10vLycq1WKxaL9Xqdcx6GoZNyq9Uql8tf+cpXRkdH+/zE9PT05z//+bGxMXrs8vIysB0J3Ol0ut3uk08+WSgU9u/fv7i42HMDiejmzZu1Wm16ejqfz5N6kZbTDZuV5wZl2UoCkzfh7LDnedPT04888siTTz6Z9krSrgSAQqGwe/fuSqXiQlzLy8skmfHx8c9//vPT09N94li53MhXvvKL5XLZBQs5l2EYZQS+A4h7ZEac/+OuphtsYGDAnWut6eZGo9E/JENWyBiTz+dXXdhmBKZy+r4/NTXlLK2LLTtXOT13UigU0k+gOz+ePNdgywjstJGqTJ1OqVRytKRBUHo+qdvtOoM8Nja2lqWFQoEe29+F7nRa9HVjkIpC3ycEpr8UzXOfpF+Rmg6fUK2cVtF/pZSkKy6aSv918yL0X2oGagAhRLVapVCNm5wcGxtzZIuiyCliqVRyv+WauVKpuFJRgcfHx8fHx9PNTPOfExMTSHtZFlFEL1WVBsH1G+cCtgRwEhoL5YrELD1sRT5uQpWeT0VKG42VWHdyjxvZIuXo9nSdRNqJiYmeEUGxWKRqOm+Qnk8CcQ4nXSoWi04grjwjIyNY0UWk5ZkuZ6qh+xGY3vFlIY0xnEuj40uuJO45TgdoLiBdTqcJLmLsZobSDgXdX61W6ZlOAtVqtVgspmtEv76uW0FmOV33fD5fKpUmJycpvEdXtJb1er1n5hmA53n0fsZrH85FvHtvErt/HAsspeyhR3oqPAxDCqU4lwxJdB6rQ4JIBRKdH5jW6fRja7WaO4+iyOlfsVh03yW7QRZjIwIjIX8URVEUjY2N9dCjXC47zmitE6NhQtbR1v/JT/8SYNqExihrYQ0EtxFzczmyp183xjSbTeo1tNZuppFznnZraXyetoFOCATP8wC022334fDwsKumMaZarZLOOUE5Ua9L4KGhIddGQoiZmZnBwcHJyUlsQOB0w6VKviGB2+02YKRiFkmoScJouB9tt9s9yuDiZ0iNxl2T0RfTK1XSY2A6IcPoHluv1ymcUavV0otSfN+nSz0cThMYADFfKdXtdicnJ5OlQQYwExMT1lohlO9TDMK1u6HthEjeTbHtCJyeN0cqNGKtDYKgJwCQ5oa7REymdiL5ughh+lvxEDRRF+cHSinJUDh1L5VKnuc5+9DfAhNp04UkMrtKlcvltJbwSBuDMKTXhbBr18/QG96IwE5iUeQSMsRTtetqJ1bPwfq+76RHV4UQa/23nqVCVClnGJvNZr1eT8vWySrNwB4Cl8vldKwuCALOOUlmIwuMJKTvJor9oN3fhfa6TXKhSVY25XMSWq1WEASuJGkvjH6CprIpROfk5lSRumxX4GKx6Fqc6Oce2Gg00ktcGo1GeuKNkCawtbZYLDode+SRR4wxvu8DRko+MjLingxACEVWTWvpdZs3b13veEvblMCklxQGqFark5OTuVwuiiKl1JNPPjk6Ojo+Pq61HhoayuVy1KNHUTQ0NDQ1NVWr1eghQ0NDjUZjeHhYKTUzMzM0NOR53t69e+v1+vj4eKfTmZqampmZsdaSNi8tLeVyOaRUSmtNTAjDcN++fekOm4a7fSxwpVJxJImiyF2iaSRSYtLRZrPJI/3GG9+UkgNSau+nb/81wELWotfSC27CQMJicnJvrVYbGhool8uOTkNDQ8PDw/V6nTF28ODB3bt3k+OwtLRUr9eHh4fJXQcwOjqay+Xo6vT0NMntkUcemZqaGh8fN8ZUKpWhoaH0YHViYsLzPKrm2NhYetDrRq0klnUJPD4+nhYCscUNjGPlSBHY933XWf/O7/xOMnOzoQW21lar5b3T44NDjw8ODo6PT0ZMkaByudzQ0JDWenx8fHR09Mknn6TOd3R0NJ/P12o1KsDExMTIyAg5FNPT08ViUSlVLpfz+Xyj0eCcf+lLXyqVSqSQ3W7XGDM2NuY6ysHBQbecljFGwyWlFAmKdKZn5WmPBXYjlHa7TV9H/J4d8+STTyYDIsMYBzA7O2uTF8q8+95bgOTC48LbdgRGokAk0EajEQTB/v37qS+sVqsuoFIqlZyqkVillOVy2bnW+/fvdxqMZNxSrVbJgDhHnUBdJgDOufsWqd3g4CDi3ZhaKUUD440ILKWsVqt0ia5Wq1UppdPmSqUShqFzNGZPnD5+fBYwLPIAduXa+0J1aAwchhGN61goGeP1eh0wRMJSqUTVnJycpEcJIdIfIukKx8bGXEChVquVSqX0ymTGWLVabTQaPavKPM9zgwjP88glIdBz0s7hugQmrkop04sN06LDGgtMBT5x4sSv/uqv0sC1/xjY971yJQ+o6elp3w/3Tu2HBWPclSeKImqLTqdTLpepA1VKuckCIUQulxsfH2+3265FfN+fnJysVqvOojrFmJqacuc9w9SRkRHP85wZ371799p142kCkz4vLy8rpfbv3+/8RCEiamWtdRDE9vnIkWPHjx8XQhijWNQ9c/bd7etC00AuDEOyVNRBUjPQYG9yctIYQySkcBFJanx8fHBwcGpqCon/XCgUXMM4uZfLZSR9BH2R1g/l83nXHp/73OeQin6lewEp5R3HwLVazfk/QRC4QaO1ttvt0uAQwNzc3KlTp146fPzQoZdOnZo9fuLwkWPPnLvwU4Bx4XU6La2t0ZACsPA8f+/evYCp1+u+78/MzCAZNVCN0mN4GmM3Go1yuUyCInVx96SnrMn1ILRaLVejcrnsBHLw4EE6J52m57iJtHUJ3GNtKEJLrbMRgTnnR48ePXLkyIkTJ1577bU333zzmWe/3ofAQkR7p8eFDOv1uhBqdKSoVexCFwoFpypUZpJAuVyemJiYmZlxHRA1nAuIcs611oVCIR2lI/i+PzQ0RMtCkQyA6eFKqSeeeML5zEopsvM9y8XTMnGXJiYmqGwUQzVG+b43OTlJHzLGjx+fPX58dnZ29pVXXnn++WePHjt06/Y8pdTxuovbkcB0b7VatdZS3082kK7W63UpJcmdpBAEgVMCCr0Q3FhUSumGeZVKxZks+oROyOCQuZieno6ieOYtiiL6dVpKZa2dnp5O7MP6BKYO3pGE/us0JpfLOaOktX7h+Ze++c1vA8brLtMYmAjsppG6XmQ0tLbFYhEwtVpNSplm3d69exlj+Xw+bUPcaLNQKLiJkLGxMbcK0k3PUnQqrW10QkKge5xUXdg5bVfXJfCePXvo/tR8Jk+HD7CGwBSvPnXq1NGjR+MFp1ZsRGDGGGDKlbzSsZkt5CuwkFK7Vq7X6+koyeOPP07BzmKx6FqfvGU6v379Op0Ui0UXqO90OhThQ2pyyPd9GuSnA+x0G/V0TqpIoadTa7fbPQGRKKLpQ0MPF0LR7c8998Kzzz6bhLjUxUtnufATC2wdrRKy0U/0TrUZ9M5KmtXHujDuu8BHIjB9K4yCYjEPY/ZPTrLQ3zs1of0ARgHGaD5RK8MqHvmA0VLV62NSGWMBg0qpagGpDKSt5MsWiPjKTIwyuj5WiwSzMBpGwzAVaRhhZb6YsyRBY2ExVq1BGStVMV/A6jDP7t270dcCU3zCqUI6gMQYIyvkosSw+I3f+C2aRpLae//c3ycvB1YsCGEBA8M1DHK7d8GqSqkMoJgvwUJpK5WBwXh1LF3T0dG8BYyBMRgbm4giAQsRyWKpYpM2sQAXChblYoUxbgG6jQ7JoqmJScmFm2wbHB6iajgPorXcJKmuS2AiVVomSJyFdQmcltLhw4eT76mLF93rRXsssLFQtbGSBh+bqHl+Z3LvlJDaVaRRG1OaboQIeLFUofo6+dBt9XIJVlnBYCSsgjWasal63VpN+wpIbaU1Xhg0JidMYnUBDA8PU7Ep2gLABUdGRkbSMTynJK6aURTt37/fjaLHx8eXlpZIKkJEtVrNxbcofnnq1Cmyz4C6cPEMII1lIWv9nDXQMUeVpbckJ5TUBoDS1ut2FwAZhFJbKIBJKpayIoTlMAI2Zqmx0CY16az55gmstIly1dFqrYDAO1gqALycG/jFfAERg+VWel9slKGYYS0qrVUYKVZzxdrYaH1ffSZXGxsqVcdG61PFiXylUZmcNhyQqFbG8+XKaGWkOFEoTRZvBbciSDo41KMjuzSMEMIICQ1ITOdqpcdHqLQffSGH685LpVLaObzjQg4DYcHPzr1jwQy9H9hoaNgghFIzudyB3DAUL44UYJF/PFfOVQXAFCAxXZ4SgK8sNaRUKNUnJsdmcsOl4ZFivTY5Xd2bHyrW9u4bGC3Wh6uQEMBwuTZd3Vsfre3eM1IZm4oCFb9wV1hI+8TktOXSKA1AKKmBSqNea9TJgST2sq4PY3tqRO1IjhKS0UqhUKhWqzTgzOVyzgC6GResDzV34R2AAdJo6ZxnA63Bh4uP16cLzLZzY4MCbKQ2PFLLBVzBAgLj1UlBEerAQkAAA4VydbgyXd07misXa+MTjenSSGGqkp/I7Z4c2g3JoNl0pVB95OF/NjExUSvVayXFfMAImFtRJ4QpTFRV4idTNfP5PEWzsPmFHENDQ5OTk6VSaWhoyIXWNl7IgZhTPTXZeM4AACAASURBVAs5kkaHgowJbAENGGgFwX3AB/yQdTiHthCAACwQsQBW6rAN4cNKFTFjDH0VgBQRrIJVmyOwBUIfmkFxSIaIYXkR3S7CALcX4fvwOl8ZGUToo72IyEfoYbmNSIErcAWmcGt55bwTQih0A0QKTMGPICS4Dx1AMxu1AS6VLw2T4Pu/uO8ffern9x3YL4SABjRYswsNFoSbXUrp9u4QXKP2X0ppIDT42bl3NJhBJGQAqyAklIIfgDP4bbAuIhlXh0lwiYB9OV/B7RZuL0MoeAxMgSt14xYihVAgUri5BKbQZeh00/fAD8FUfM4VmIQXohkgMhCoD+dLgyOTjTFqt4BH0hpqPRFxWPjN9pP7D+ybnll3KWU+n69WqySQtB/rzFcURcPDwwcPHiRneyMCX7i0isCIvUgNw2EC692C7kD7UIG8NQ/JwSWa3vhDu9BlYBzdAIGI6ygUmMLtFiIJruS1G2AcgQfmIfQQ+vDaCAIEAVpt3FoE5xBSt5o66JIml6ul3bt3l0ql9BwPVXyzSymdYqR5zhjbeCnlBgSmXsrCAByQllxoA95lMAbgr79+vFIv1BrVYqH69NOHQw0OCA2llBEMVsJKzUNiacgkaas1xF65OQJrA8axcPvQcA3zy7i1iHb3lcfKmPfR9n/loUeOf2Hk6Gf2YP4WOu1nB0Zx6zaatzB39vTju/DhFXgL6Cy8+uhjmJ+Ht4DuwqHPfBoLC2gtYOnaMw99BrcXsejj2vLX9xTQZrh2EyFHpwslyYnochZAcSACQiCE1ZvczNCTk4FO6MP+mxl6CAwoKAltoBSk/MVKEcxD0MTy4q/9z/8TmtfRWnjxU5+affSRb5R2w1vAwsIP8gV0FuAt4OK5E488jKUFLN3A/NVnH/4sOgtoLeDatVO7HkN3ATcu4Pr113c97u4/vftxLC1g+RZCiVCBKWo3ziIAXAoNaKDT9QwsLIzSMAg6nhLSabMbEPZM6buQgXNk3En/jVwa6v0r73AEClIZSaYVHAg0msFvjpZxYxFLHSz6swNV3Aix4B/6wsNPf+HTT48+htYCLl8+vftxdBewcBHnz5/47Ofi+l6/+rv1GpYWcOs6lpb/xac+jWYb87dxbenUQAWLHTQD3AxODI+hGcDn6Ei0OHyBZof8UmpZm1pmhzVRlTTWbmZw20KcuBJRbHIzQxRPhCtYDqjYhFpASwSt3/3Oq416+bmXXgqE/l9/8P1Grf7i7GsLvhJApDSxVPMQVi0uLlqgywSPa2hgFazYHIGVQdtHK8Bi8NJoDZ7/teE85v2Xv5DDtfnfenwA896zP/8FNNtfGxzEtfmT+QIWrry85/O4ceXE5z6F5bkT+UfwwTvf3/Morr//wtBnceX8/zY6gA/PPPfop3D7yuu7HsOH7Rf/8R4ssK/9wm4s898YqSCQiBSCCNZogAMhsGRlGwiAQG56OyGti6KVWK6B+28ntGsI7AdtWCO9LoSAlJDsidwAguaJkccxf+Fk/lHMn/s3lTyuXvith/4RWlde//wv4PL52dwj+PC9bw0+ihtXXt7zeVx+/5Vdn8PtK4d2fxoX3/7urodw48rRwiNYunT60/8Y81dO5h/FtXe/N7o7vn95/sndgxAAk1AQfmhpHGX0UrulXetZUKTAteba7YQuykVDO7dQ0a2ZI63tvyFJQ7179Z0QAYcUNiEwA7oaHYkmOzZYxk3v2C8M4Er3uw81cKn96kOP4PaVY8NfwJX3Xv3sP8GNK7/98M+jdeW1z/1TzF85Mvg5LM8d+YWfx4eXjj78T7B4/ejAABaXXxzO4Xbz9Vwd861ndudw9ebhR3O45f/arhG0w199bAStCDeaYEp3V23JcO7Vx9hO6HoxtyDEGIPNbicMicCGQzNY6MRDNt6NYP6DyeLw/pl9/+nP/5sAzrzzk2phaLgycTMET5aQN5cXT84eP37syHe/+92IS+qnjYHREkbAbt4CC46wi8iD1/xauYJbt8F8+N43hnNoeQjbCJr/cnQI3TaWFxA0vzb0KNoL6C6gdf1YbgDLN9C5Dn/heH4QywvoLqD94eHCABavozmPxYWTQ1XMtXGTY5H/+qN5dCRutnCrCWnAIpJA0/epo1/0uwHb9Ib+HqWk//bf0L+awNxAAEqKKPJ8aAPO4XsQwS8VBzF/Ee0FzM/9xsO/AH8BF97C8sKp8ij8BbSuoblwdHQPvAUsXsatK8ero+gs4PZVXL/08ngJnetoXsPywgt7HoG/gOZVNBde2PMIOjdw/SyWrz9fKyKS5DaJjg8DWARBYIFISWG0UNICWqooZNSUNrFItDisx7dMB6vdym03YePWPG40Bl6HwBIQQKjhS7R8tIL/5Z9+AbcD3AqwwF98ZBTz19FewNL88yO74C/gxnksL3z9oU/DX0D7Q1w++0qtgM4NdBfQXvjG6ONoziNsYunW1ytFtJfQXkTLf7ZUg++BB2h6vzJaAA9l8yYEh+/DGDdSoG4rnSrsY2zoJ4NMXyQCY1Mb+gOiomaQDAYKiAANBXPrxs/+/GA1N16d+Ku/v7gc4ObVM794oD528Mu//x//PATm5hdlEq/mnH/j6WeJwDbulgysJKu+mTGwgZbaXwYC2ACdFlgA3YXqIvCxvATjQTXRuY3uMpQH2QHzEXiQPriPD+dx8xaUj/Yt3FpEy4P0IX0EPro+2ssIAywso8VxowWPY6mLUCJSEArKQGmR6CVWwgabS6mTJmq6wfRGKXWwPoG7fgswMIA2CEMoDhVg+Qa4j24bXR+BH9eu4+PWIqQP5aPjYX4B3If0EfoIfTRvg/no+lhahPQRNHFzEc02pI+oja4Pz1+5f/4GwgjSgkkabUYh01pbQMFyraxrXwtYdFptIQRVMy2N9HwyKTeJLr2u083NrF21v6K1KRdaWAmAwhMQGlLCa6O5hNCH52GxBU/C52ABbs6vyMdfRsdHqwPuIWzG9WUelm8g9LF4E8pDtAh/GWET1of20Wkj9KECWAbOIbgWXYPISB+Q1ihadOFI62iMzaTUcSt/V2fPUZtOqdMlAisfIoCGAkJAQUJd+dEPX/vyWCk/WP7peS8Ebl19b//E4EC5/oc/+mkAcODo7Ms2GebNnnxZA0wabWiNvoIRmyYw0A3aFpKrLsCD9m1YDstgGXgXhkF0YAPYAKYL7cFGkReCw0XSIUAxZCjEn2uw5ZC6JWhACGipvDYUh1WK+X572RoBq7USNP4Pl9sIBSTCZS+ef9pMUjubWsW+Ml2UsjyrktrRcpQUgW1sgQ0LQhjYkEMb2W5CMyhpAhFbIQnpK6q48TU0DIsDkqIrbbTyeSycRBp0jyWBcIg2N9QCUSLD+DBGSFi0Wi1qND8MuBTW2dKkKdPSYIyl504cS902oLVb/PtmQVDnL71jEVhwZbjz3BVspJkG12DL3XkNpsF87lkYHRlSAN1VK5rAkrpLhEvBihwMNciyRQAE/u2rUF2ASdmBZKK1aCzXkIAEZFd4vvSVWVlE4Jxht+oWm0xq54LSbl3gxkntNiCwBygYSB88gIICAkCBw1z5u//47cnBx56c+erfvLPsWSzMvfXl/fnBSuMPfvTWIsfzs68eP/kqF4qI+dzzhzXA3e4aLRTrbpbAFjSRoa3VSkcaRuoIWkJLQHHhw0hY7gctDQZwrSUpm7UIGDjAAREBBqEFA4SAMXHgQwHCQgC+CTgkh+JQAkpAMcMUDDcCgIo4DMAVFKAB+zHTyvao5tocjm7cuBGBYaEjFRthraA5RAQL6rIEYDWCIK611YBBJ0JHQFtojUiBIhABj+/nDNaiq8ABGCgRS4Z+XgEUqtI+g4ZmHBYi4gDCiAkltaW59iSubqxR8f6n9Dy5MztOJs4/7PkcQM8GqTVQFy++4+aBbdK3cNgIMgRvot0FW0LHA+9ALVkugFCsqm9o4/pqGdeXcVgLLyTV1Br8drikwKElZNQWHQEJzqGUguEw1uow6CoYAWOT8jvTmk799dHTyro0Pem/zoVeL63sZgnMLyy/8yf7cgO1wuTbc7wp4d06/8TUUGFi+of/9W9fev0HTx899dQzL377O9976qmnDr102CZ9XNJjqI/jQq/ESEADMLhGM8m5pqUmBtbAgklDmkdmqSuN0tBACHAgkgi5EUBX26QvlgKqLbscpmuiCJrDBBAcCKG7ipN9EkZrgEvhWsW5f87COPPiMkW5Nlu7NbIPtNYWiuaBz19yBE4kRhU3BkYC0ibWlEIVFHXjieTFakMbE1iYxYDR/S2PUZROA12f0/0hN9LE/RUMoC20NUJabZyNJQu8amVC0pROa3tq6njr1LGPt7wBaBppZSEHWWADq6E0uAITYAJcQAooscLwdeSjNATQkXrFKTGw9Mo/i4gFVhsehCtLkxT8phfLHxBCrVndvArE27V5wrBm2U/fLIjrL4vavAttrvnn/+KrE5WJ6vQP//jvQuAf/tt/eWLvSG5s6oqHjsWbP/i93/z6061OrLufDIHdDY7AJnmuSX7DpO6xEEZLWGkN6St50EwKAXQVp69GMALwolABwspmt6VhuJUKxpNhm/sCpmsETxpeABEMh+V21eY0Cj71CZyGYUgTBuQnU8hx46aKkRA4Wp/A8WHIkbNYVVO93rlKETiQnE6Wwy7XSgOejNz9C+1lT0Z0fyvoaqDTaqd+FErEFkZqRaJw85NKSNhYX11Yzu06Tm/YAMAYSwe0PjJ6CWzjKY7EV4vpuRIrdRXvkQn1yIGRAoiMWmq3mJYqWbYQdhgsBHW2ClEzlIKWNQOhWV7qkMnoGTL0NCKS7rsnkud8sSiKei6th00SeMMglr6J4MoPf/CtmYl93zj8pq/ww9//V5Xco8+deKUDtBSYwXOHjgDw2h1awmHTBP5YQSxnbtOHtStmOG2Sk37UtMKWhNBQvvS7ostNpKEiGzHDRorDoQwUVKhDBZUvjsAaGECZoOPRGC8OjQJSqzBijEcW0Na0/a5GnM7bOcPp2AwNgdygrk+32jdOA2XWEliuiCqJFJLKWiiVHBpKf4TzrujSeTfyCtW8O9dQpbGSgiLp0c30W6EfIJUOgebA1s0LjURrrbXplLHOVqfFsnaDzp2wejeSTffjiYJZDiNhFHXuFmYj+XQjT0F1Rdd9zq3kwHChHEl4IRdAN5LDI0VjrQI6obBAyBR1Cj5Tuh+FV42qaHdkeut1erDQd+CwSQJvNI0E40E3odmJY8eHK1PFxkwlP/jiM7/NgYVgZRpJxOtF4yWjOunSEgJvbhrJpqJRKYquf54YfBMyDyuLrhWtF1WSA6pSKbnPu93OxHgDFpZLyyUMNOO8G8CA06pj8hiTgz5Mu4U22bDqpkNWj1U0rVhot9s9hreP4q5HYJkmcNocrqyaS9W3/1/f95SOlBJSxav/01cnxhuAWlq6DagoCq3VKV1ZSRzTc57OCw1gfn6eThy93VU35ZteuLYZrL+dEAawJl4pZCWsgjGJGvaThuCMhR5gFpcWlBIWRgO5ck0DoYhd60KlHnClY1fOhEILs6J1fQjs9j+kk1KkJ/9JMndKZ79JAm+4kENy2b4Ny4zmsbMS+LAILUKgFSph7Mp6SRsbsdUEVpteidUz+qWYCn0j7l/j8e+Kgx3G0Sbtc4rN6lDLgEOg+PAANHIDI/sqU+PDpS9OHiyNFB59+LEDB54YGhrJjeR9L1hZ+O0zG/I4QttlMU1C4Ux0eiSM1YbF931aF+mITes3dJLNq09z9SewXnUYSxNLKo5CxwOKtedOad0hAInpxrTf9CaHqzPFxnRjevCxPbXdhf3l8S9OPdEo1aZK4zaULAgpWOX58RAuPcLfKC80ktCOiwsQY+mGnmjWZhATOB2F1iuduNKQClJBKRjldGM9+RhmWCeIPxcr8qnkSjAY2D04Vh8vjRRGB0bGxyer1XqjVKsVKvG+QgsYtBaXYDZsSpcNC8nsd0/sioYea7corX3S5gi80VJKGMAY6LDVmhc6pM+DQC96goJDAGAVJINkKgpoXGI/cQL3kJaU2BqYOIi1MkdCMytNFv+gwJO1mXgiQYJikZP1KaXt6rE6tFT0VCjD211oQBpEK1HoVqvleFgoFPbs2dMTek3vlU2rO5Ig1se2wI69ClAw2hFYplyRtLLK1KWEvcZX6Coo7Pr8rvT9iukvTRyEr8Fs7FNpIBnu2pRFdUln1uaFpmwebkcrUiks0wqdXo20Gajzc29b+BZcWK5TNUsIrBQksXcVgTeWD7vdhULQDFSHQ2G6NgalYI0IA2gNY8bHG0rR7EUcFIu67WSvkuxngpPdSPv37x8eHh4dHaX9hukI1to4/BpsksDrb2YwgIaSYGGHNjMozYSINzOEBl43iJ1k3oUKYeX6BN7sZoZVdTA2PpRNxjM2DuS4Q2mrtFXdwKPtgcJKC9MNvHylMFIcpSc0psYaU2Ojpdzg6EixWivW61/YtUvTalDSVG27gW+TUIcG2qEvYKQ12q5I87Of/SwAKeWBAwccLZ2aPvfcc0eOHPnOd77TarVc+Kpnwd06DQMoI/sTWK1Ep+JdkHRQ7daep/9rYbgRTEXj0xON8Tp9+PDjj+QKo5N7J/KVQmWsOrZ3vFDKWxifB5GSGlhqtxQsxQXSdSSQIV24dbNar+Xz+YmJCTd15PKBhmF48uTJZ5555ujRo/StvrlUNxKOOjv3toKvUgS2QJItTMWkIv9Zx4q2rnyUkXQeac6NoEt7BneXiqOC+1qxyYnaxGSt2ijm8oO54tDUTH1g+FFjI666FtwgCmn323rsIugkya4b4tIeI6cMzWbz6NGjtOF540pvksB6hcBqFYFj0ye19aztWsONhdSQQMAVAKO5CDqwHFaSBcYKPV1RNk1gmxqxKBgFBSibTNgSgTWkhqTiCAgF5YtQQXVUyKF8HlTGyhxmoDysYTTUw4O7OJSAUTAaYFKN753WgDA2GfZUK416lzOVBGk7KuJABGMTpaRNc+RCM8bcrn0kZpbOX3rppXRzuiDtxjrqLLCwYGuDWOmggIJRMAKKwwgoqh2H4avPVRzIMQIqkExAjdSLAmowN6QgOUxluq6guYk4DINQMCPlEQlN8tFAsVxqjI/Rso109pJ0XmgqOVanW0gPGeiLJ06ccElRNmuEHYF1QuDYSripNatgFLRximY3lk8oA08zHktGjJbzCqpcy5PfUiqPKhsFoqvBLaRAOLm/wXXXgmtwDV6p58q1PIUJ1iK9s9+tbXaZAyj1JCkM5/z48eMbV3qTBE7FSMyqL1v3uBUS2lUUNauPjUrz8SwwksZaZY17zu3KARsr38p5oVrkUliYUqU8tX/vnsGBSq1ardfqY436WENbE0bMAlyKqem9lVrVJnSSWiVTVxZJJseJiQmTyuLt9nYiSTj28QgM9CR2fycRiCExrY5jOauCjWrtzuNPrLEwXhhYmHyxILXQwEhxtFgulSrFXKlYblRGcqN7Z6ZonbMFIsErlUqhUEivUujZe+Cy+SLZpp+eR5mdnXXBgmeffZZOegYXHw0rLjSNgVc29K+4yzFx3TTPpuQzPt7wfQ8wjUZtcHBPY7xeLOYrldLQyGChRHQ1UgtlZK1WKRbzffogamudSgNOm6LJWZudnUXS4x87dmzjKm9E4Pjqdk/s/kmBc055J5FK2kKidClp0qvq0+vgAPi+TznKnPdbLBbTK2Ap44Tv+ydPnjx58qRbtLBZFxp3+c0MNAyjiJpL7nXw4MH4cUnWdZdRpIdmzvxqrWXqjWdu2QalnnKxqyiKnn/++RdffJFqbYx5+eWXpYy3HG4+EH3X38xAuVOUUi4vpBvez8zMpHWy/xSua2LGGBlbl68DwNNPP33y5Ek3iDhx4sTGT8oIDABQSlUqFQq3jI6OlsvlarVaqVQmJiYoOwRWL1RGKsKcNpi0PyEMw3TWOCEENfzRo0cPHz589OjRQ4cOfe9733vqqac2G8S62wRO//SePXsoQLpr165SqTQwMDAxMVGv1xuNhsuf6qrsWNezdsVx9ebNm0jS7lIOAwCzs7Mvv/zy6dOnZ2dnjxw5Qkwm9H+p1wa4FwQm7hWLxd27d+/bt4/y7zYajccee8wmedFogcodhwDp7Fm+71Mc/rnnnvvWt7713HPPHT58+MSJEy+//HL/V6tszoXedI03hy0jMFL5FomutBqBssNOTU3p5GUWxNv0pra185mUfjX9icsqeuTIkTfeeAMp27WpaaS7TeD0xnGXmy6fz9Pnbm0GJQ8k0m5UYPdm6p4lgS5LFs2lfe1rX0sHadJrS2/durXJ4t91ArtXZ9TrdUc/KvDBgwfpk02tISPL0bNZ7etf//qbb75J53da/p0ROAERWGs9MjJSLpfHx8drtdrU1NS+ffsajYYzCJQQ54tf/KLrF2nLrkvM7RYP7tmzhwpZqVTSOTpeeOEF1/abXchxtwmMVGSYsvncvHlz3759X/rSlwYHB0dGRvbv3//YY49R90R3Wmur1aoLTbl3XCAVxErrOo2BsaJkOHbsGNkrEvKdXgLcB3edwI1GA0Cr1aJ8948//ni5XC4Wi+VyOe0DAxgYGMjlcn26Y+L5gQMHnMKMjo46Jj/11FN0w51eB58ROAG90gFJflmykIwxrfWuXbuAlRc3VyoVyjUJoGcFnAOpbLlcTr85hey5++9GrtEWjoGRsoGFQoG0Z2RkJJ21XCnlkkhSl1Sr1VzmbfrcnVhradaXEl8Vi0V6rYF730rPWNH5IJ/gSqxPkMC5XI6q05Pz1RgzPT0tpWy32yTAiYkJl/1/LVxf32g0crlcuVx+4oknKDWyE4iLOKx9Y2v6SRmBYziVGhgYcCmOAURRtHfvXpf6JO1kLi8vuxAiyT293ZcukVVJmyBCeqnNJjYz3GUCp9fxuWCeC1l5nkfVT89eImUlyCum29I7mdN76Fw0S2vtXr1JL0NyBfhYqzhwb1xoOhkeHtar34yZzixJA/6PAtfixNJ0LqGP9oCMwAmo/8vlcvV6fWJiIpfL1Wq10dHRsbEximbZJDMgqZp7OR3pIhLGphfTuHe4uF9xL/5BEuVGqhXvvJ3wnrwfmOaByMySQAqFwvj4+PDw8IEDB+gVQWSCnJ45rroRoOsLKGSVDrOnVwim29EFsdNryDeDu05gSqFOMqF4XrVarVartVqtXC7ncrn0wub+TSnXvKjV/de9a44+7Duozgh8f2GbveB7m2HLXvC9dcgIfH8hI3A/ZASOkRF4uyIjcD9kBI6REXi7IiNwP2QEjpEReLsiI3A/ZASOkRF4uyIjcD9kBI6REXi7IiNwP2QEjrGFBF4j4jSB491zUUbgjMDr4aMQeLV5eECxQmCjEgKLrSWwWE1gqbVMfWuHHIAFJb1ICYSn9wOv0cstL/O9POT6BDZp7TKrtOv+FtGGsNbSPQmB4+QW94zAZrWIkdq/Hqwm8JYL8d42WEbgfscdCbwixgedwJQxqIfAaqsIbDYm8A7DKgKzj0DgHYUNXOi1BMYDLqiMwNsVvQR+uyelzoOtl3fCDgxirY+MwNsVmwti7TSYjMDE24TAKolCZwTeJsii0P3wEQn8YHd2GYG3M2ICK4toNYEVXc0IDHgA04YSg+woAq/Et2ycq54IfCaZRrr3Uejk84zAMfoTGD3s3WkEVhcuvbUxgVXyKooe8/DAYBsTGJAAm7vyviPwRimzdwKMFQA36H44fwYILMKMwAAAdeXae8o2DQLrXrkaw/QSGA8MgXvmllYS+1sIY/nc5XNJxbdsHtiwyFOme/b8W9p6xrIdTmBAAVyZzpVr7wEBwFYtUYhh1vvwwYa8fPVdgzbAAEri4ziaJvBmE31sZ6ydHE69mQPSWH723LtShRHvChlsGYHJAl+7fo5e3wxIISIppTFqJx0uX6UEGJfNC5feUqZjEBjLjVHGIDmMMcpYsdUFvreH5ecv/lTZpURJ4tQ8K9Kw3FieiCUlqAfjsMIdEe/a+DVt8tLcB8mbze/dUspeAnPhGwTnL/7MwicXOrEtzs7shL/OnEqAaetd/fD9xAL3vEerpyfe8pLfm7987urbBk1HYLckODG/pMdpx2TLy/z/Ux82tL10GMvPnX9H6YALTyp/iy3wxbl3DbpKB0kQyyTd6g75K6y1WkshA4Bp2/nwxvuAr62XWGCzyvzGBmc7lPze/GXXFz7QWNbWUzqwVic5A2VyDzOWJRbYGHO/68+6BzeWWwgLIZWvdDB3+czWW2ALYRC8/c7/uL10+eq181evXTx37szFi+fnLp+fu3xuxxznP/zw6tzcxQsXP7h2/dzVD9//8U/+bH7h3OWr79HVuRVc3GGSOTd3+dzclfd/+rMfXV947/LV9y7NfXD16uUrV658+OGHFy6cS6RxZu7ymbnL5+fmLsZyuu+ldH7NcW7u8rmLl85cmjt78dL71+cvvf2zHxvLtAm1CbfYAl+49I62nlS+s8DaRFSynXFEgDFGSRUCzMCbv3kG8A262oTacL0CqQ3fYcIJtfUXbp8D2iQQQBmjACglVkuDay1jOd3fIoq04WuOSBsaY0qlA23CK1fPARxgANuK7YQAYJRmAD9/8WcWIUWhU36/3DEHSYZm+dwY2LcI1wRXd5pk6GBzV9+WZtnCB2RqDIzV0kiPge93KaXDHCsjYZoHthDaRBcuvgdwbUKDexeF7iFwnw39a4fyD/ABxOm/TWohR7DBSqwtL+29P+SFS28BPsDipZS0mdymVWtd/+4BOFZhdUaOMwDPUupsD2RrofthB+5GWoe9wEqVTZYTa3shI3A/ZASOkSW1267ICNwPGYFjZATersgI3A8ZgWNkBN6uyAjcDxmBY2QE3q7ICNwPGYFjZATersgI3A8ZgWNkBN6uyAjcDxmBVyCEAAwXwdzl84Ds+ksZgbcBMgL3Q0bgVdBaAuq9998GJMBfePGpjMBbFYn8nwAAIABJREFUjYzA/ZAROIbW2vd9wHT9Vqu9KGRw+KVnZk8ezgi81cgI3A8ZgWNwzgFIyY0Vb73992SBjx1/ISPwViMjcD9kBI4hpUyuKhoDe93FbAy8DZARuB8yAq9AShmGfsi8y1cuAFKbUOl7sRspI3BfZATuh4zAMdK5hN7/4Gcs8gB+b1LqZATui4zA/ZAReAW07dRYceHiGUAayzIXegVhGNKJlNKlilRKAeh0OgC01p7n0eee51F6RGstY8x9PQgC90BrbWr3OQBEUUTP4ZzTeafT2YYE9jyPquP7PlVECJGMwWKZUPWpyUgs1lq6RNisPDcoy1YS2FWBQA0NwFpLl5zGUkNrrelzqi+FnaiyURRxzul+avo0jIkTFTDGgqALGHoOY5xqKoTKthPeGZ1OxzGQpO80r91uu3NSa6TaD4C1llScdJS+7k6UUqTxDsZllN1mBG6323RCpHK8pdJ2u12kauckEASBO3c13aw818PWW+Ce4rl+igTFOXcSA2CMIX6mGb7S1glIREIIzvni4iJWdRZGSp7u+ikVdkbgO8C1kzHGGQQpZRiG6YJR83ieZ62lhul2u6SmTtedcaZmoP86VfY8jx4S26ttRmAAnHPHNyok8VZrrZSiT5RSZJHoUvq7dMNm5blBWbaMwD12MoqiTqdDDerk42hGHXQURVR3YwznvMdniaLIVTMIgjRFHXsZY0RguqfbDSjZtbXZUso7FtQYALdv33afuAYgOMV19if9RSFE2sw6eqfbibwpAjlU1trtRmCl4oaguqQr6xrIkZZY6iTg7vQ872PLs6c4W2uBpZQ9apnua3pERHc6egMIw9BaS4Mm9y1SA/ddYq+1lroMISKlRJK/fuV3MwLfAeVyeWhoaO/evVprGvIlU+eS9FUIUSwW6/X65OQkAGOMEILUlDFWKpUOHDgwOjpKn7j+m07ow6mpqc985jOVSmXVD28zAiPRsHK5XCgUGo0GaWEQBGktbDabACYnJxuNxu7du8kap43tZuW5AbaMwFpr5/fSyc2bN6vVaqVSGRsbI4HQ1SiKjDGOlmNjY8VisVwu90RAAFSr1c985jNTU1NrLxFarVYuN3LgwL5SqZQMpyGEMiYj8J1Qq9WwesCTHre4AAaAfD7fY2kBTE1NpQ1sT9sj5SbNzMwwxqiyjLHtRmAXiBofH0diNtP+5O3bt11LkZcxMzPjrrr7P5481xZnCy2wEILa1/Vc9Xrdxavok54RsmvlYrHoOne6nzG2b98++noYhsYY55IEQZAaiZhOp7V3715rLTnPceUyAveHM54OxphCodBqtei/1DZKqXq9jlRTUSiiVCq5L1J+4lKpVCqV6NxdiqLosccec88HtqMFFkJ4njc2NuYGbwBIDo1Gw93mTNDu3bujKCJ/xCnlZuW5AbaSwOluKwxDKWW1Wk2P+anfOXDgQBiG5HqQTIQQtVrNxTWdHHbt2pXuuYQQ+/fvL5VKRNfk5wxgyuVyFEVCqOTXo4zAdwBZDOcAF4vFmZmZXC5HV9Md7Z49e+gk3cB0JzWYtXZ8fJyCWHRC91BHXi6XkQp0bUMCE28HBgbovzS8bzQa9Xo9n89TLdwQzlpbrVbpznRNP4Y81y3LVhHY9UTpVq5UKtZazrkxRms9Nja2Z88eZ5bpTiklOdKkz+lApvs6fe7u4ZxPTEyQwkjJAZPP550wo0jg/rLAJDshBHVXbnzlrvZYPzrvmdRxn1CXSbGZtIkgcTuB1mo1Z1JcN5nL5eJQU6pF01x1GBkZQTKhRxR1tjc9HLLW1mo1pRR9XWttDQBwzljkAez6jXMA48IjobFQksTC0HXPKzMZzhpQfDiWuDH0u0tLS04U9Nfd42a83NRlGIY9cddCodBjQABUKpW1MadSqeTGt+75m5UnPcGVgf4bMm8jAkspASNkKGQyAWMhuFHKOCGk4+HpSJv76R6bQcrgKujGRBRhpqLSrLj7utY6PSZCErqv1WquLu5SrVaTUrro3eTkpLPStVotmXXXgKlUKkrFc79S6lQLGD9oLzdvBWH7nr0baXMEJqEUi8VarVav1yuVSqFQoG+XSqVdu3bl83kAI/9fe1/6I9eV3fe/xJ7MeMYjkSK72d1V1bXv1Qu7uYyjGSdIEMSGB2NLpiRKTVGUKEoczdgz8AAOHAdIPiRIgiAIgixAEDjORzuxPaYWSmwu4t5brW+9+y8fznu3X1UvYtPiIrEPHgqvq15X3Xvu+Z1z7rnnnpvJpNNp8ugcxymVSvV6fWpqisapXC5PTEwcPXrUGDMzMzM/Py+lTKVSMzMzpC/Hx8dPnDhhcwwYYxRKsQFYciPpTZu0QEM7PT1tu8cYC4JACJH0A5PudPJP+lqyV5thDINTp14FNCBcf/2jT/4CCADGeSiEUhIwENy8+OIPDh06lMmkCoUCSbyUcmFhIZ/PFwoFAEePHi0Wi+l0mr718OHD8/PzqVSKnkylUo1GI51O9/v9Wq3WbDY7nc6xY8cymQyZykKh8Ju/+ZsUmiKT22q1bBe63S7JKEXgKGzjui4te9o5sBVNrfVD8JP+VEq99tpr8S/vZoHT6amjCzONZqVarR48eIg+ajRaExMTJCTFYnFycpL0KUnF7OxsoVAgaI2Pj2ezWXI0jhw5QqGpSqUyPz+fy+WEEEePHi2VSqQHAbiue/z4cTt2pJ4YY/SPdE9dC8Nwenqa4s/0vhDCGJNOp+lJwqpVMYPB4MUXX4z1gg4Cb3FxUWttDLrdSIm89dZbg8FAawlI2o0kpPtUp1IS30k66bXT6RAHyWgQeo0xJAHEmpmZmfgAOzU7O0sCbS1PGIbNZpO+2VoqUoEvvPACPUNCTJROp+0qPH3/xsbGsWPHRhaNSOOSZwXAupREI4ilJnmeR/PGn3zws9dee93zHECEvLu2cYMJUq6RCy0FYNDrDebn5wFNP0R8oFhREARa6yAICF1aa2IXEd1TKLjVav3gBz9YXV2lj8jCVCqVTCZje23XqDOZjE05GmHISOpCoVAIgsAaLvp0r/y05vqVV1557733EIF/NwCvrNybm2+GzCUVXyk3WKgANBqNMAzb7TYAUqyWJ51ORyk1Pz+fHJ0TJ05wzq1r4Ps+mQ3rndE/CiGIJ9ano08nJydJZyWdslarZXtkI53T09N23Yi8EvqGEydOtNvt+EsYoCcnJ63AuK7/4x//5A//8A8jfhu+fPUyF56Q7lNqgSlboNVq9ft9Ml8U+CHZoneOHDmCWNkTI6ampsgOa62JdzZclHQgs9lsMpDgeR69TwbHQp2+IZ1OCyHonj6yUz6rX4mSVrdQKJBrRHrXwokAUywW7a+8++67b7x+9q233j579szFH58/f+GN//tXfw4EQrrEtPZGn0QWwMTEBGMBaR+r4CnahFhSyQhQf6vV6vT0dLPZtFJIixORdxojs1wuEw9HAqq22da8IJ4pAFhfX7fybU0cEcn3XvlJDfjpT3969uzZDz744NSpU6dPn371tZd3ArCUEtDT2SlAFgoF3w8b9VlilFKKlDtpNMdx7I8eP348k8mUSiXGGPW3WCwm9RFNKygERYElpRQNJfGEbkiEOOedToemryQM3W6XvrZer9PKWby6y6WUZKut+NFHpVLJviNEdMRfqVTinFMQ68yZs6dPv/Hbv/3bP/vZz15++ffefufNm7eu0X7gIOw9dQBG7HeRa1epVFzXXVhYsOqNoqO1Wi0ZpidpC8OwWCzalOOFhQVrjelGa01Io2doeABwzsmM2+k3vW+dQ/KjyOSm0+nkMi8J8fj4OGLjU61WrXGmgCQSM0ny2VzXJWAsvfHW+fMXAE1HBH9+62OhBgATgilliF3djqM1Tp48SRZYKWVdZWKRMaZYLNrUZWIINdJ60QCazSY1I5moTOaLJgL0JvWiXC5TZFUp5Xke8Tmfz4/g3PM86wPbObkQ4uH4yTk/c+bM0tJSzLHdLLCUfHauoTQ7fvw4Y6JcqrNQcS6llIVCIdkwosOHD9Mv2iCFFbORhLBkDMmy1Pd9CkkSf2z2ci6Xo8QVqyg9zyMVgFjxEQfIqhOXaAiKxWIySAGAXGj6IcaiEXn77fMXLlwwxgBayOD6jSt+0H9K58CIOTs+Pq61pjHIZrPE+n6/bxceut0uiePzzz+PWM5mZ2cRSwbJLvls1p9ptVojCb00eDMzM+R0JVOaDxw4gER6MBEtxNswMrXWygp9W7PZDIIgCAJaTSVvmRpp80Aij0PiD/7gZzQHBoKPL/8lEPhB17rQnBkYeF6QSqWk5LVajZYfgiCg7/R9v1qtJkNNNhYQhmGtVqMeMcZqtZqUMrnjgh5GLE82poI4toThcJ01y77vWy1QKpVsboZ9cq/8tDmYAM6cOUM3vf7GLgAOAq9YygJybGwMQL02YxJBekKpDfhZN0EIUa/X6U0KtlHzrBJxHIfwk2QUqa2JiQnLDcdxCHU2Co2EPDSbTc/ziEWWLQRgJBJ7OOf0zblcLtaMGtB2Xk1z4CBgFy68R4mWgLz04V8L6Svta/M4jhd9mDnwwYMH5+bmANC8P5fLzc7O0gO9Xo9cIBoD4tGRI0dOnjxZKBTK5TJFsw4fPtxsNhuNRqPRIKZnMhmKipVKJcJ5GIb00WAwsAlS/X5fa91sNicmJk6cOLGwsEA2UynVbrc55xQgsYqT3PjFxcW7d+/SN1A78/k8Gbdkv3zfz2azQ/FJA84l5yEdEfzx5b9UxgWY4/QBaIX2xgAGi4vHy+WyUqJSqWity+UyNZhy/ezMn8JFAGj+XywWy+Vys9kcGxtrtVqZTGZhYaFYLJJsNZvNbDbbaDSq1aqdAlifhXwcAhvnPJvNFovFxcXFVCplHWli3fe///1klIEmDnvlJ4ZD0HHm1m4WOJ/Plit5QNIkIp3Kzc4scC4pDkxK32azDgaDubm5ycnJubm5QqFw/PjxAwcO1Ov18fHxRqMxOztLUbpisdhsNicnJ6vVaqPR6Ha7yfAyOTvWUFer1bGxsUwmk8/nq9VqconYxqsstjudztGjR2mqTFKXzWYLhQKNwtzcXBwaUIAuFApSSs8L4p+2+yKkgVhbv0cutB90hwBsoI3FW4Q0WmoTgH6oZbY9AtgAQQgpwSW4gOdACvRcBAKuC8ngeP+4VAFnEAycwffBGRiDyxCEEALtDfgCAYMQEAw9DwEDEwh8hAJeCJ+BSbg+mICQkBJKQ+laqVirRqgwgNTKAMro5GperVar1+tJWberQaVSqdVq5fN5et4KNN3QxJ4S8WjKZ4VVchPzWSgEn139WwPGlW+gtdYw9ImG0gg8SAbO4LpgApzh3hoCtpjNYdBHINB3wARYiFBg4CIU8H0EHL4fPe8xuD64AGcIBHoDeAE4gxsgYHADCAGlhRdAI5fOtGr1UqGYHPWRRbtcLkcxMMRrwnZmWy6Xq9WqhbHdl7MTP5N828xSZO6V679UcA2Y1GxToJQBC6EEJMOgBz8Ak3A5Qo1QIAhO5otRHzs9cIFeF4GA44EJ9LoIBfoOQgHGwBiCAM4AjCFgEUM4ixgoBZSA50FKcDHXbOSzuZH41ghVq9VSqVSr1Syeba/r9Xo+n6dI2Ii/aVfRGo1aJpOq1+sW+TYQTStngPzbS38VMid2oWNQGUBBKggDAWhoqEAY7gKuVG0DQccMG0BKSVP8pIxakbVrs57n7RnASiMMsL6xNF3GWgf+AHfv/CLXwK02+u2Xcql3vnv4nW8dRGcN/fVXDj6He/dx7z5W2xefm8CtFfQ66Lbf/dUDuN3G2gr67YvPTeD6CtoddNuvfucAVjq418W6e2osg7aLvoeeE42rFNCS9JQCJMAB+SXn9mwh+jFhYGAgFMTlGx9xCAYhKD9BaAw8cPYPizm4bfTWcX/t9edeQLuD9Y1zv/bCuecOn06n0d7A3c7Zbz6PdgedNm6vnj94BGsd3L2Plc6r33ke7Q422vh89fzBI+h0sHJ/++dXN+ALMKDr0VnT0vFhIrM8pMFHM0weEXvkx59fYvA4GDcMAJSB1GACYfAPjozB6WFtDZ3eW+kirq1gZfDGdw+dn0ifnpjE/RXcab/9/Bg6HWys78iftfVT3/0O2qtYX8WNOz9+/jDaK1i5ixt33zo0iUEXG/fhenADBD6URNJNfySUwEuSFXHuypZEjngkFKAgFAICcNhnkIAJoNb+63//V9P5iVT+aNeFMUM+IblY1u9KauiHBLDTx2CAzuBHLxzGoHe2UsbNtaVf/XWsr/7uc9/GndU/ODSG1XuvHvoO1u7+NDOJ1dVXfuUbuLn6x5k8rl17c/wwbq9f+Pu/jvX1H37rG7i5+i9SeSxfe2vsMO6vv/Wt53C3c/FIDiuD1w6nsN5/qVjBRhtBADEEYB5fjxzAehPAEuLjG58wSAblsRAGYApcIgxw/cq73z+G/urF6Szur7753EHcX/npoUncW33127+O+/ff/tZzuLv6zqFxLC//YrqIO/df+ZVvYmX17K89h/ur7xwax5XlP84Ucef+S9/4JlZXt39+o/db2aq8tY4Q8AQEoOx4JUbPjPz96NgzAmANaSA0Qo7Ag9v7rUPPo9P+3W9+GyvtX2QqWL7z3sFx3Ft5+4UxrKz+/EgG91YvTKZ27O/K6pnvfBurd985fACfXf7TVAa3br/yjb+HlTt/Uqxg+fpSsYBB95+mM/B87/MbkF8dAIMBEn/8s/ez6V+r1g9V6tPHX/ydlTaE2AzZ2d2PNrVoZNbOebg3AGsNztDvwu3CH/xoMovVDgIHweCtyTzWeri5DL99amoC6ysYrOPW1VPTabTX4PXQXTuXyqHdQdCDt3Fmahr31+D14Ky9Pp1Du4N+D93O741NYrWDjT763j9JpeEHYAF8B0rARGe9E4bVpvQ+MiIASwVoTRb4+iccUkAZQAkJCb62DhYg6GP91j+aOojb19DvYLV9amoSfg+3l7Hee2sqA7eDoION3rnUNLob8Dpob7ySSaPXQb+Djd7r2WkMNuB3cH/j7GR62+dfyhbgSYTAgIEZSAgv0FIxxkzMjccM4E+vX5LwVORC68gCc47AwaCN7soPs1PoddDp4cqND2YW0O/hzk1s9H7n4IGov7fuL41PbtvfU9Np9NfhtNFZfyObQv8e3HXcu39uMo3OPYQ93L5/ujGD0AcElITSj9rp2BnA9MNfDGAWAVjQ5NcBOn/25/+hUp9O5Y/evCcp2Gljcd1u99133z1//vx7772XXJyIs/DknufASkJzRhNvR6DnAcztr6AbYPkWlAvegdPDndtgA8gBQhf+AMaD9ND3cH9NwwE89D20BzAe4MHzsLKGwAH34HtwPfgBVlcRhthYhxTadyx6Ezz78gdnGzLQUgFSgyuwT69/pCAkFECTPUBohAGYB9YD70G4YB7u3oPnaN6F9nDjFgYe4ME4WF3DwIP0oD34AwQeuIfAweoaAg/woD10Bzs/H6DdR89HoCABafrtDhIa7TEDGJBXrl0y8OIgloY2UIAQkAGECzbAYA2rd+G5aHfR6yFw0G/j9p3N/g48bHS372/oQbpgA6yvIhgAA+gBOl0MBgjbgAePwWGAHAgfBswJnnIAywjAJs4SNwHQ+Y//6Z8XylOLv/HPnDByoW2YgVJ8AJw+fTqZket5Hh3lsicAG8ANWTf0fIDBUNBFQgsVYqOLUGgVul4bkkGy0F0HGGQICF95oXApsMEgHOWChRDCV56jXIgQSgBCMlc7XYgQYQAloAUg7t29aSANtII2yXZSwx/5NA9SC/ILDdiVax8ZCAOhpTJcR9NxKeB0IN1g7SYMC9wujACE63WVDqFFMOgw7gICRkCEnLmCe4CACjmL31ch4y4XHrSADLd/XjJIDQEEIuj0qfsj/shjBvDVq1EUWisGA2gDA2ilmQPhQHtgPUgPIoBgCEOIgPrFgwEgGHehBYzYtr9ahSH3FER0LwZCONAMwgcEjDSBJwaOEtLEAfBHT39XAAsDCQPtA4ExYQ/o/M//9W+LldR0aeHumnbdTYi++eabiJe/Kf3NVlpBXERvrwBmQAh0hbDzz/WNjgGgDJSSkgvF6YQYbpgrXAHFITnAoRUQKsYABi1hBCSP7hEqJgEZ71/RUMpIl3mh5hK6GzoSWkKrZDvVIwewARQ0N0xBaPgGwfK1SwCDETAA12SEWa8PyaEDIAiZy4xgQAAhpRSKBzABWWxo14gwWi/QHJpBUa9dI3g0O9A+9E7PSxgRhAg4hCImMMacwBdGPykAX48BDMkQLyAZYwBpEIa8CwSOsw7DjeaANtCeCPoy5ND9ft9Ah0CbO9v2N4QheetB+ICCVtAuZACllZAhyQxCJyCvtN/dpXzXl0UPAWBsA2DlkQVmRq7/t//xr2vNXHXmxY4DY6KJ7nvvvffmm2/SYj2A3//937dm2brQDwFgBfScEAb9nh8yLbiBhPY4DAa9Pn0ZE1xBKyOtcWBcKqMlIGAGAxexA8FoVRAQMF3HJXu2OugygAGuEXQzUIxizo8fwBKaIVRgwwDmOuQgCxxNkiUgBk4b0MLoEHAVp+bd9x0fgEbYHYRACBgFxbiKo+hdZxAAHICEYtwHdnkeBpoL6vVGp03s9SV/egBsopHSgfQVhISQkBxSAoFSXCgFtFnAAWgoxh2YnfrLAQVsuL4bv8+5dAAP0fzFYcxhLFqTcOSjD4rgSwMwJBAAKgB6//m//GmpNtU8+oP7G0YqADh79uzLL7/8/vvvv/nmmz/5yU9eeukl+pmRLJ89z4EBz+XQ0IEmZhkFCEBAcgUDMI1QAHDDANGCFoAIbBF7JaBjNCpAxWDUAMCMYcBAyxBwjPJpNS1eNBoCsH4MQRpI6AChBNPwAe/q1V8CATSP2CZgFAAwwZkOFaQSEoDDmAEQKnDNgUApKEBEHnek1eK1e63j9TAJKHBA0DPbPo9oU6SKra7LQ/nkXOjrSRc69qAlIIyW0AM2cIXLoTngGTANAIOBKwHPD6l73PZxJ/6o+BkNY+ADHkDzl0iiuAYHAv3olyWwdwDHaRsJAGsYSJfGO/CdW3/25/+uXE815r9/Z1WaeMvyG2+88cEHH9i6ULu2Zi9BLJ2YckVRnAiT0DoGYuKSChrGZ8Rs7gdQACMdpBYbMxBaeAEMdMgb5boBNvpu5BoBfSZ4bK7dkFHrwpD8LG10NF+gNDe7LwzD+VXJbXSW3cmKdjvVKjAAhw7AJMT2ANbR0EiAQ0voIRbp4Xsz/L69pIaCcgPhBYszc5BGuQE9f7TWBFf0mN8bwMAobQAuhRsGkXejJN2EUmiYkDN6TDFOo5lMAUj2Llkmmvb6jGyifgAaysTanAJHSeLaQCrIoSUDvSN/NBf2npJVIAFmTjSP+huuTV9qNGeEkgpggsOAeS60htKQEtTlHcjucEhW5EScIi6EoOWbXYv42Q6M0p4BHIlM0Ae6//v//Pvxqe+Umyc7Dhx3s2jtyy+/nGz6zq3ZC4ANIpNBIfvNew1oUJlNaBNjGlIYxsAUJVSJwIcw0f8aPXngEJTmrg+jw+5gvtHSMvqRdmdAEU2fi1AqGn6hZGKAtNYyWekKcfjd7ue091ZY7aZCop2rPUX8kDSbHQGwCWF0MobEQet6GiBhgu3j5j3iew0YDQUorQKWfH56apLuBeO+58yX6whC4QWKhZGUa61haNIbCN4Z9BXQcx0J43NGzBkMBnYoR/hjZZTSxUmR7SweX0AGkjKxaBnJxDYzntpska4IsTvzRxg5cDb5E0pIpA8ctt6XF/j5bM4YwwFHRrnHnt834MztwYht0WXJLsSMSMXIrsyRbPBh2jOAJaATAJYRZzhYR/6bf/knzdqRXOHbswvFYv14tnRy8dhvfPTRR77v25EbqQy8XWv24EIbUoxKw0gJLeleSw7JyFIaySFDCBm1VtLzfr8joRVk9+49KOlyvzJfg9K58bFao5oppOu1Sq1QmJ5IN8r1Sr5cLlZgwENa7gLnnEqIkf0xMZ6RqMzgum7Sqli5dF2XIvAWrkEQJNPWdyIT2QClIDVCIIgAnCipY4YywyKTCqNjt+QLXrUSgPT6PUBWykXGvelMKp9LFwq5ciU/O9PM59KtZr1SzqemJuhHldHEAconNYAy2pCUJFRS4PlJc2Q3vm/lj/1zd25sxx95+cYlDk9CcCMIj5FRJRCSQh96Ezvxx3G79l7JENAwslUqQMu5SrUwnUmlJmcX56qtWrowXT82O1ZIFVtVZgSD4GASLDJvOxDNH8MwTO5DStaCJu1vq4LtQH8nAOtNAAvKgBZAF2gL03M4uEGv7ye/1FZR2LU1ewpi6QiTkAySQ8JIQIaQPqSBNNG9YJASUkK6fh9SADKA4JAwmnkDBp1rFlnow0gFLSAMdLGQi+eWBhp+3wtdjxxCOwAG6PS6BhBGJ+RzU3ApbZ18aUpqTe5Qt4X2k1BP7k0bGhXSF9pQCosZrolluaViDKtorYsyxmQ8XqP3I68h9+j5w5Nj9AyXAT0/mZqgZ6RmBtoLXKFkyKOphJTSkDJKGBNb5J26OT09XSwWaTclACmlNT7Eln6/v3fP2fJHfvz5zgDWGlpCy8jpUFbp7cafgdslnhhobXi9VgTEoLNuNFfQzIjZY/PMiBW350P7EAHEKut4YG3VYxBqBwAn9zzQlmO7S2l1ddVu9sIX6fQvFcAM4IEWa8qsGrgcCONElGSdIVuQfufW7M0Cq2hiQ0ynIYouDs2gOTSH5NAcWkBJ6K7n0CJQx+3Rwsn41GRjrimBQLGJdCpTmK42G8VyYabZeuG5755cPAZNHrvmIYNBZ2Nz7xu1kQlOgssYs6WS0+k0bUyze/TsZpelpaWlpaU/+qM/spMcymLfCb2WJ0oSp4QBu3LtkkGgERrIraEiE/OBNB0tmNFP0T0FoeyimoImbmiYbCmXbVQ88CAIyuVivlVLVXKYni84AAAOMUlEQVTFcmls7FB5tllsVZ3Atz80GAxc17W/CgA6KitBmfDUfdoQR/04dOhQUtQYYxcvXlxaWnr77bcRs3E3PmzPG7LAwRCATQLARsaXJk4oYFv+9GXYl74BtN5cdKw0q7nytMO6gGi0qtX55tj05EyzVSgU8jPN+vcWHRZIaA/yprfqQewC4GTZYLvblKrY0fsEmR/+8Ie/+MUvTp06tbNUfFkutAB8ssA9YN1ja64AM5Bqs1gcjehI5Hm71uwBwPQ8QZfuid30BTQVVPEgSoBrQ+6lAHp9xwCuVpPFgjFotWZ7LORAvlwx0a4BzUQIyEwmRV8uBYNRR8YPV0plisdE23SNRkJZjuy2pZtbt25hS0zi1KlT9p2d9doQh7QgV1kosE+vX5IIBEIJuU3UF9ouDqlEtrYZvpfxAokCQq0lkM0VFHAkl/WNNkCt3kw+7wkxXa14jJu4VHWlVD62sBh4vhKSh0xLBQMtleTCbsBigk/nsgAGg8FgMDh69KgFs93Hzxi7cOHC5tarB2FIggzk5RsfyW0BbAAjY0dRxktgcf7RFv4EMBxgXBpabQIOjo0rIFOdlhBu0MsVMv3AURR/FmAKzx0+TFt2GLQPmZspTddy2uzkbEZFGqiGIXHgyJEjhI6R2cTFixd3E4g9AlgkQusJADMgAEQI0wHWDAbEDsY3NYdKHE63a2v2EsSKQ6+bina4X0PBCwMWqpApj0kSdMmNBLgGDCYPT5EQHzwwNjezUCrWJtKZ1sLseGYsX8ur2CE30HNzM9lshhSZ5EIwTr8kpU4WvqQybrY2st28sRRXkFBKvfvuuwAoOJ/cOrc9mTjMbmCMUmBkcBhCWthUlml6iDMqAWyVeMwM39Mzght6vlmfVRJMYTKTa9Rmxg9P5vLlfLl2dP741ETGAJ2uQ/9WzhdatTrFmaNlYW1goEQ0z/cS5prIFl3wff/ixYvWIl24cGFk+9qDk4H89PpHEoGClFrBxADWiGezwoCpaF+olnGXt+VPr+MwriP+6IhXE9kJCRGaMJufnqk3WpVGJVtZaC6ebBybL84Yafpdl7khDEqVcrm6zXkLVhiSN+VyOZVKWSQrpc6fP494Bef111//si1wJEtxOqG2sy4OOEBXweEm1m1Kaa2TB0yOBNm2tGaPAE4uAOhhCU4CO/6UMx2JLAc0pIIB/H4wU5uFARdmfnbRdxnJNIdkEKVmSUJ63DXQfacX74LWSkgYkFPtDjwrofYETQAzMzO2ohIASgW3dVVPnz6NhKnR8XF125OJnR0DA2HALt+4JBGwhAUeBbBOgFMDOhZQvbniPcQrAxg4bmiA4nSJPPVyvUU7jbSBMIBEqzpDFTCHruFFG8E4SUcYhgYQSmpEvqItIg3g/PnztqSG4zjkQuMLPLWd2CM/vX6JNtjsDGCholwOPaq8kvwREX+YggwUNIyGAeqzjbXuqoSu1mvC8QgNOtB6I/xebdEEWvgyyizgu83kqfBLIoUJiKujATh79uzS0pKJa0S///77u3zTXgG8+fSQTt3kATkqckTjPhjt3YU2W66tjdv6qX0/cV8t11zXB1Cp1LLZfK3WqFQq5WqlXC1V6xUvcA10cskuWa/Maqj4mClNZkRKSVVy6P2lpaVz586dO3fu7Nmzb7zxBpnivZEBLTZTYfcr138Zz4H1JnpNYjiG+5i0tDFjt+EMVUuuVeo8FAbI5YvVcq3VmCmXq4ViOZ8t1KsN+xgA3/U456DyyyYqQJ88CwqIDv7VWtdqNavBX3rppbNnz168ePHcuXNLS0s///nPLYdHFpwejOSV67+MNjMoAYwUdo+CnSYR8Bvh7Rfyp1Aq0r/X6/XcdHZxbv7I2ESz3mqW69VCxWgDA6Now8luXbDgRBzno8IpxphTp06dP3/+4sWLH3zwwSuvvPLOO+/s6ozsBODo069AYfcv54cT9etarZbdsQxgMBhQIMqWv7Na04pmcrZma9/Rl6RSKXKP6c3XXnvt4sWLu5nZ3ekRn8yQnINR8RrOOdX6SR5lnCxEnqzwNCJqdt+ondTZehr9fp/e/NGPfnTmzBlSeSTKNqy1dy/6kZ/MQIeYADhw4IBtHuGQyk1Sp0ZKZG0lekxKSfU6bGHQqHTh0tLp06cfLIy3D+CYqPiTMSadTqfT6Vqt1mg07GsYhtZupNNpquVtA612FSR5OgQAY4ytKmxtyzvvvOM4jpRy56nEzvS4jlbhnNPsnarbFQqFyclJKpRVLBap0I9Sino6MTFhDzdKloYhziB2WHK5nB21hYUFxHMN6zbTkw8Rf47pkQPYnrPRarXK5TLVza/VakeOHKEKWDSmYRjOzMxYQO5C09PTxLF2u00BLVohf/XVV+l/v8gT2bML/UjpiQGYjvOhblNlJrtgK6W0hdRscXMqc0d+8kjwyUpwq9UqFotTU1P5fJ5KXhKN1MHaGz16AFNpdSFEOp0mLNnu2/YnJ7EAqOybdUySC920MEadnZ2dbTabVICayrjZc+t936d1CntC2kMEsR4DgElx08FlI1WiLFyp+4cOHUouC42QPRIdQKlUymQyi4uL9uHkAXFfRPsAjqlcLhP2yGMk5pJQ0lJQsgwiOUgjcXV7DhM9OWJgqY4hqQB6fRhH+hEDOGn9ZmdnyY+l6rC3b9+OvlTrEydOUDKZdf+ScTgkSjjYYtGId32PHFe/2da4Fje2nEn/wPTIAXz8+HFb8d92hN6ZmJgwxtDIPkguii0fT+R5ni1YN9L9XXNL9wEMAHBdl6ZnuVyuXq+PjY1R/dRcLpfL5ebn5+lQPFtzHIkwaVKbjihRa2SSrd08avAh6NFb4DAMSZGR2iqXy4uLi+VyeW5ujqrPptPpVCpFBWu3SmoyLyX5Z/LoEABBEFj9RSuidlUJw2DeCz1yANMRH1RY9+TJk1NTU6lUqlar0enk3/ve95IRgV2+Z6TePXboLG1xeYD9P6P0zAGYKHlmT1I7kgqkQ7owrBHtFMUGXTqdzsjg2cUhKaVNTB9ZQnhQesQAHkEO1bgPgoBwlVzDT4qgrW1GN2RAth7bZ/+0McIRLxTDcrz3XQ2P43hRciIoTJUcaKUUhTYwnH+2Ew0GA5KKkbXD9fV1Srx9sBDJPoBjsue1Judy1kW0P2fHzG4VpG00ycLxtgx/ci43cnzmQ7b/EQM4eaDmiIdv4srjtsA9TQqGa6psIpCE2LobIj4MOfmdvu8nPyJI20W4vTb+MQDY5tsgoc7s+VKIQ/EP0vjk7jQiK3hJGcMXOOT7AP5q0dN3wPfTRE/sgO8nR/sA/mrRPoB3o30AR7QP4KeV9gG8G+0DOKJ9AD+ttA/g3WgfwBHtA/hppX0A70b7AI5oH8BPK+0DeDfaB3BE+wB+WmkfwLvRPoAjelIAxrboBeggY7l89RNAPNMAjtYPCcCMCrsb8B0A/KyRXL52CZtnI0VlB822Gu1rzShjDGFbG3712uXHCWD6/a0ANgCWlz8DNJ1KThs+n0FSis5PF4Bcvno5Zsg+AdDkowFM6RDQcfJJ/LnZcn3VaYcePVEAb8dfGoPl5WXbOJLjx9Gep4uijpMWW17+DBhNb3qGaQTAklSb2SrlXw/0YscekccKSG3Yk7DAW9sZWeDlYQv8TAJYM0BuscDbz4WeMdoJwF8PsG5HDwpg9jQAWCdcaElynBDcZ+RVRqK5CWCZAPC2GH7ibX5sr3YOHCjtUwUs60jvTE9Dyx/uNabR/tEMSwBCm+DqtY+fIIAjuYyDWJdj2RUkx/Gln5lXEYsmB0Qc1bOlUq1GS15PvM2P7VXsAOCtMQKdkK6noeUP96q365e2GEkAODDwgeBxAnhIBBMGJ5JdpUMMCe6zcAmAKe3HClUkw/KJKwndZ+oS8TKSp4wbx+flMIBHQPtVvyyMkyMeYQRg2gRXr3/4OAG81XpIxBolIa+RHMelup+diynjxuNBC+MRmBPXqFg/MxfbHsAQWyRKfC04k4Tx0Iib6FCDJwxgmQBw0mMMn1UAs70D+Im3+bHy54sA/PXjyTZuCGKMPEUABoQf9NfW7zpuB9Eh2+wZBLBBSCMBBEHYa3fuuV57Cx+eXQDfvX/VD9eJP0r7w4GSEZ58PeRnp1FmAPODruNu3F/5XGlfm+CxZWJtj+Fef/32neu3bl+7eevqleUPP/7krz+5/DfXrn/6TF03Pv90+dqlq9c/vP75x1eWP/zwo//3yeW/+fzmZ8OPfTZ8PflmP7br0kd/ceXq335+6/K1658sX/3k6rXLV699unz18nYM+eTa9U+eeIP/ztf2Q/zpZx9+fvOzK8sffn7zs+s3LoesL5X3mKPQO5piQGgT6U7zbF3R5F9Il9xmbRixYugxo6LryTf4CfAnmmjoUBsGSGOUlHyYIdyAG4QGoQF/0m1+JJfSJBUcEEL61jI/sWUkraVUodKMGseFJ1WwZRL/LLwKpX0h/TjMmPSjkmHJEfX37LwKQCgdiYoVnu2CWEnWPQ0tf7jX7S8hA0CStpKKdD0X0n9iiRxJMAPaQGjDE/KKZ+ZVkr2lcdKGWzFNsGKEnnibH9+r2WTOVm5sC+Cvuvxsr7UTOmsI8E8MwFRGXCkxnHWknzWyKXKEXqlC4onWUmv5pFv3NFAy5gx76I3WVlak1lIbrg3Thn/1mSbjXgxdiBNsOQ+NUWHoSykZezyJHF+Ubq6UkpILwYR46EN0vrqkt2jcfUrSEE+0pkNEtz4gY//5q06jtpfetXWOR3bdPsbthBgC8Ha7f59F2dVa2hiVHTC95xMMvs6k1OZhkcZg2wMPEs7n14C2ATBiyFBNacaEMZBSP9k58D7t05dIz6L/sg/gfdqnrzD9f3eiNuWK/74WAAAAAElFTkSuQmCC" alt="" />
2. 二维数组的定义方法二
var
Myarr = [[0 , 1 , 2 ],[1 , 2 , 3, ]]
3. 赋值
myarr[0][1]=5; //将5的值传入到数组中,覆盖原有值。
说明: myarr[0][1]
,0 表示表的行,1表示表的列。
任务
试一试,创建二维数组(一维长度3,二维长度5),值为一维数组和二维数组索引值的积,如myarr[2][5]=2*5。
在右边编辑器的script标签内,创建该二维数组。
?不会了怎么办
1. var
Myarr = [[0 , 0 , 0 , 0 ,0 ],[0 , 1 ,2 , 3 ,4 ],[0 , 2 , 4 , 6 ,8 ]]
2.
var myarr=new Array(); //先声明一维
for(var i=0;i<3;i++){ //一维长度为2
myarr[i]=new Array(); //在声明二维
for(var j=0;j<5;j++){ //二维长度为3
myarr[i][j]=i*j; // 赋值,每个数组元素的值为i*j
}
}
代码:
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>二维数组</title> <script type="text/javascript"> var myarr=new Array(); for(var i=0;i<3;i++){ myarr[i]=new Array(); for(var j=0;j<5;j++){ myarr[i][j]=i*j; } } </script> </head> <body> </body> </html>
二维数组
3-8 编程练习
使用Javascript语言,把以下数组
var arr = ['*','##',"***","&&","****","##*"];
arr[7] = "**";
在页面显示如下图所示的图案:
*
**
***
****
任务
第一步:定义一个数组,存储要展示的图形。
提示:
var arr = ['*','##',"***","&&","****","##*"];
arr[7] = "**";
第二步:预想一下arr 数组的长度是多少?
提示: 使用alert弹出数组的长度,看看是否跟自己的答案一样。
第三步:将数组内容输出,完成达到的效果。
提示: 想在不同行显示不同数组内容,别忘记<br/>换行标签。
?不会了怎么办
代码:
<!DOCTYPE HTML> <html > <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>数组</title> <script type="text/javascript"> //创建数组 var arr = ['*','##',"***","&&","****","##*"]; arr[7] = "**"; //显示数组长度 alert("数组长度为:"+arr.length) //将数组内容输出,完成达到的效果。 document.write(arr[0]+"<br/>"+arr[7]+"<br/>"+arr[2]+"<br/>"+arr[4]); </script> </head> <body> </body> </html>
数组
JavaScript进阶 - 第3章 一起组团(数组)的更多相关文章
- javascript进阶课程--第一章--函数
javascript进阶课程--第一章--函数 学习要点 了解内存管理 掌握全局函数的使用 知识点 基本类型和引用类型 基本类型值有:undefined,NUll,Boolean,Number和Str ...
- javascript进阶教程第一章案例实战
javascript进阶教程第一章案例实战 一.学习任务 通过几个案例练习回顾学过的知识 通过练习积累JS的使用技巧 二.实例 练习1:删除确认提示框 实例描述: 防止用户小心单击了“删除”按钮,在用 ...
- javascript进阶课程--第二章--对象
javascript进阶课程--第二章--对象 学习要点 理解面向对象的概念 掌握对象的创建方法 掌握继承的概念和实现方法 基本概念 对象究竟是什么?什么叫面向对象编程? 对象是从我们现实生活中抽象出 ...
- javascript进阶教程第二章对象案例实战
javascript进阶教程第二章对象案例实战 一.学习任务 通过几个案例练习回顾学过的知识 通过案例练习补充几个之前没有见到或者虽然讲过单是讲的不仔细的知识点. 二.具体实例 温馨提示 面向对象的知 ...
- JavaScript进阶 - 第1章 系好安全带,准备启航
第1章 系好安全带,准备启航 1-1让你认识JS 你知道吗,Web前端开发师需要掌握什么技术?也许你已经了解HTML标记(也称为结构),知道了CSS样式(也称为表示),会使用HTML+CSS创建一个漂 ...
- JavaScript进阶 - 第7章 JavaScript内置对象
第7章 JavaScript内置对象 7-1 什么是对象 JavaScript 中的所有事物都是对象,如:字符串.数值.数组.函数等,每个对象带有属性和方法. 对象的属性:反映该对象某些特定的性质的, ...
- 慕课网javascript 进阶篇 第九章 编程练习
把平常撸的码来博客上再撸一遍既可以加深理解,又可以理清思维.还是很纯很纯的小白,各位看官老爷们,不要嫌弃.最近都是晚睡,昨晚也不例外,两点多睡的.故,八点起来的人不是很舒服,脑袋有点晕呼呼,鉴于昨晚看 ...
- JavaScript进阶 - 第9章 DOM对象,控制HTML元素
第9章 DOM对象,控制HTML元素 9-1 认识DOM 文档对象模型DOM(Document Object Model)定义访问和处理HTML文档的标准方法.DOM 将HTML文档呈现为带有元素.属 ...
- JavaScript进阶 - 第8章 浏览器对象
第8章 浏览器对象 8-1 window对象 window对象是BOM的核心,window对象指当前的浏览器窗口. window对象方法:
随机推荐
- 加州小学grade1,学习计划
Visual vocabulary Grammar Spelling Maths Chapter 1 Patterns and Number SenseChapter 2Understanding A ...
- 揭秘FaceBook Puma演变及发展——FaceBook公司的实时数据分析平台是建立在Hadoop 和Hive的基础之上,这个根能立稳吗?hive又是sql的Map reduce任务拆分,底层还是依赖hbase和hdfs存储
在12月2日下午的“大数据技术与应用”分论坛的第一场演讲中,来自全球知名互联网公司——FaceBook公司的软件工程师.研发经理邵铮就带来了一颗重磅炸弹,他将为我们讲解FaceBook公司的实时数据处 ...
- 【POJ 3580】SuperMemo Splay
题意 给定$n$个数,$m$个询问,每次在$[L,R]$区间加上一个数,或者反转一个区间$[L,R]$,或者循环右移区间$[L,R]$共$T$次,或者在第$x$个数后插入一个数$p$,或者删除第$x$ ...
- kettle及数据库导数_20160920
一.kettle是什么. Kettle是一款国外开源的ETL( Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract).转换(transform).加载 ...
- jdk安装图解--windows系统(第一次安装和第二次安装区别)
第一次安装可参考 https://jingyan.baidu.com/article/22fe7cedc9b93e3003617f64.html 第二次安装,如已经配置好环境变量,cmd下执行java ...
- poj 2420 A Star not a Tree?——模拟退火
题目:http://poj.org/problem?id=2420 精度设成1e-17,做三遍.ans设成double,最后再取整. #include<iostream> #include ...
- 如何为现有控件的DependencyProperty添加Value Changed事件?
主要是利用DependencyPropertyDescriptor 的AddValueChanged 方法, 比如下面的例子为DataGridColumn的VisibilityPr ...
- 湖南程序设计竞赛赛题总结 XTU 1237 Magic Triangle(计算几何)
这个月月初我们一行三人去湖南参加了ccpc湖南程序设计比赛,虽然路途遥远,六月的湘潭天气燥热,不过在一起的努力之下,拿到了一块铜牌,也算没空手而归啦.不过通过比赛,还是发现我们的差距,希望这几个月自己 ...
- hadoop编码问题,mapreduce中Tex与string的转化 乱码问题
引用:http://blog.csdn.net/zklth/article/details/11829563 Hadoop处理GBK文本时,发现输出出现了乱码,原来HADOOP在涉及编码时都是写死的U ...
- JavaScript高级程序设计学习笔记第三章--基本概念
一.标识符: 1.区分大小写 2.命名规则: 第一个字符必须是一个字母.下划线(_)或一个美元符号($) 其他字符可以是字母.下划线.美元符号或数字 标识符中的字母也可以包含扩展的 ASCII 或 U ...