仅仅记录神经网络编程主线。

一 引用工具包

import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets %matplotlib inline np.random.seed() # set a seed so that the results are consistent

  二 读入数据集

  输入函数实现在最下面附录

X, Y = load_planar_dataset()

  lanar是二分类数据集,可视化如下图,外形像花的一样的非线性数据集。

plt.scatter(X[, :], X[, :], c=Y, s=, cmap=plt.cm.Spectral);

- 特征 (x1, x2)
- 类别 (red:0, blue:1).
 

三 神经网络结构

 对于输入样本x,前向传播计算如下公式:

损失函数J:

输入样本X:[n_x,m]; 假设输入m个样本,每个样本k维,输入神经元n_x个数=特征维度k,输出神经个数n_y=类别个数。

  • W1:[n_h,n_x];
  • b1:[n_h,1];
  • W2:[n_y,n_h];
  • b2:[n_y,1];
  • trick:Wi第一维是第i+1层的神经元个数,第二维是第i层的神经元个数;bi第一维是第i层的神经元个数,第二维永远是1,因为python有broadcast机制,自动对齐。

def layer_sizes(X, Y):
"""
Arguments:
X -- input dataset of shape (input size, number of examples)
Y -- labels of shape (output size, number of examples)

Returns:
n_x -- the size of the input layer
n_h -- the size of the hidden layer
n_y -- the size of the output layer
"""
### START CODE HERE ### (≈ 3 lines of code)
n_x = X.shape[0] # size of input layer
n_h = 4
n_y = Y.shape[0] # size of output layer
### END CODE HERE ###
return (n_x, n_h, n_y)

四 初始化参数

 W1,W2:不能初始化为0矩阵,如果这样第一个隐藏所有神经元梯度都和第一个一样: np.random.randn(a,b) * 0.01 .

b1,b2.:初始化为0向量 np.zeros((a,b)).

def initialize_parameters(n_x, n_h, n_y):
"""
Argument:
n_x -- size of the input layer
n_h -- size of the hidden layer
n_y -- size of the output layer

Returns:
params -- python dictionary containing your parameters:
W1 -- weight matrix of shape (n_h, n_x)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
b2 -- bias vector of shape (n_y, 1)
"""

np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.

### START CODE HERE ### (≈ 4 lines of code)
W1 = np.random.randn(n_h, n_x)*0.01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h)*0.01
b2 = np.zeros((n_y, 1))
### END CODE HERE ###

assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))

parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}

return parameters

  

五 前向传播

  cache缓存计算结果,反向传播需要。

def forward_propagation(X, parameters):
"""
Argument:
X -- input data of size (n_x, m)
parameters -- python dictionary containing your parameters (output of initialization function)

Returns:
A2 -- The sigmoid output of the second activation
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
"""
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
### END CODE HERE ###

# Implement Forward Propagation to calculate A2 (probabilities)
### START CODE HERE ### (≈ 4 lines of code)
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)
### END CODE HERE ###

assert(A2.shape == (1, X.shape[1]))

cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}

return A2, cache

六 计算损失函数

  

def compute_cost(A2, Y, parameters):
"""
Computes the cross-entropy cost given in equation (13)

Arguments:
A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
parameters -- python dictionary containing your parameters W1, b1, W2 and b2

Returns:
cost -- cross-entropy cost given equation (13)
"""

m = float(Y.shape[1]) # number of example

# Compute the cross-entropy cost
### START CODE HERE ### (≈ 2 lines of code)
logprobs = np.multiply(np.log(A2),Y) + np.multiply((1-Y), (np.log(1-A2)))
cost = -1/m * np.sum(logprobs)
### END CODE HERE ###

cost = np.squeeze(cost) # makes sure cost is the dimension we expect.
# E.g., turns [[17]] into 17
assert(isinstance(cost, float))

return cost

七 反向传播

  • 每个参数的维度

    • dW1:[n_h,n_x];
    • db1:[n_h,1];
    • dW2:[n_y,n_h];
    • db2:[n_y,1];
  • trick:dW1,db1,dW2,db2和W1,b1,W2,b2的维度一模一样。

def backward_propagation(parameters, cache, X, Y):
"""
Implement the backward propagation using the instructions above.

Arguments:
parameters -- python dictionary containing our parameters
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
X -- input data of shape (2, number of examples)
Y -- "true" labels vector of shape (1, number of examples)

Returns:
grads -- python dictionary containing your gradients with respect to different parameters
"""
m = float(X.shape[1])

# First, retrieve W1 and W2 from the dictionary "parameters".
### START CODE HERE ### (≈ 2 lines of code)
W1 = parameters['W1']
W2 = parameters['W2']
### END CODE HERE ###

# Retrieve also A1 and A2 from dictionary "cache".
### START CODE HERE ### (≈ 2 lines of code)
A1 = cache['A1']
A2 = cache['A2']
### END CODE HERE ###

# Backward propagation: calculate dW1, db1, dW2, db2.
### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
dZ2= A2 - Y
dW2 =1/m * np.dot(dZ2, A1.T)
db2 =1/m * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))
dW1 = 1/m * np.dot(dZ1, X.T)
db1 =1/m * np.sum(dZ1, axis=1, keepdims=True)
### END CODE HERE ###

grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}

return grads

八 梯度更新 

优化过程,梯度更新: 使用 (dW1, db1, dW2, db2) 更新参数 (W1, b1, W2, b2).

梯度下降公式: 其中 α 是学习率.

学习率: 如图所示,不同学习率,熟练情况不一样.

def update_parameters(parameters, grads, learning_rate = 1.2):
"""
Updates parameters using the gradient descent update rule given above

Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients

Returns:
parameters -- python dictionary containing your updated parameters
"""
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
### END CODE HERE ###

# Retrieve each gradient from the dictionary "grads"
### START CODE HERE ### (≈ 4 lines of code)
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
## END CODE HERE ###

# Update rule for each parameter
### START CODE HERE ### (≈ 4 lines of code)
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
### END CODE HERE ###

parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}

return parameters

九 模型 

     将前面的函数整合成模型:

  实现步骤:

1. 定义网络结构.
2. 初始化参数
3. Loop:
- 前向传播
- 计算损失函数
- 反向传播计算梯度
- 更新梯度

def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
"""
Arguments:
X -- dataset of shape (2, number of examples)
Y -- labels of shape (1, number of examples)
n_h -- size of the hidden layer
num_iterations -- Number of iterations in gradient descent loop
print_cost -- if True, print the cost every 1000 iterations

Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""

np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]

# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
### START CODE HERE ### (≈ 5 lines of code)
n_x, n_h, n_y = layer_sizes(X, Y)
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
### END CODE HERE ###

# Loop (gradient descent)

for i in range(0, num_iterations):

### START CODE HERE ### (≈ 4 lines of code)
# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
A2, cache = forward_propagation(X, parameters)

# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
cost = compute_cost(A2, Y, parameters)

# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
grads = backward_propagation(parameters, cache, X, Y)

# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
parameters = update_parameters(parameters, grads)

### END CODE HERE ###

# Print the cost every 1000 iterations
if print_cost and i % 1000 == 0:
print ("Cost after iteration %i: %f" %(i, cost))

return parameters

十 预测 

     

  • 对于一个样本,预估概率大于阈值0.5的为1,否则为0.

  

def predict(parameters, X):
"""
Using the learned parameters, predicts a class for each example in X

Arguments:
parameters -- python dictionary containing your parameters
X -- input data of size (n_x, m)

Returns
predictions -- vector of predictions of our model (red: 0 / blue: 1)
"""

# Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
### START CODE HERE ### (≈ 2 lines of code)
A2, cache = forward_propagation(X, parameters)
predictions = np.array( [1 if x >0.5 else 0 for x in A2.reshape(-1,1)] ).reshape(A2.shape) # 这一行代码的作用详见下面代码示例
### END CODE HERE ###

return predictions

planar数据集测试单隐层神经网络性能,隐层神经元个数设置为4.

# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = , num_iterations = , print_cost=True) # Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str())

输出结果

附录:load输入数据集

import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model def plot_decision_boundary(model, X, y):
# Set min and max values and give it some padding
x_min, x_max = X[, :].min() - , X[, :].max() +
y_min, y_max = X[, :].min() - , X[, :].max() +
h = 0.01
# Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[, :], X[, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x):
"""
Compute the sigmoid of x Arguments:
x -- A scalar or numpy array of any size. Return:
s -- sigmoid(x)
"""
s = /(+np.exp(-x))
return s def load_planar_dataset():
np.random.seed()
m = # number of examples
N = int(m/) # number of points per class
D = # dimensionality
X = np.zeros((m,D)) # data matrix where each row is a single example
Y = np.zeros((m,), dtype='uint8') # labels vector ( for red, for blue)
a = # maximum ray of the flower for j in range():
ix = range(N*j,N*(j+))
t = np.linspace(j*3.12,(j+)*3.12,N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j X = X.T
Y = Y.T return X, Y def load_extra_datasets():
N =
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=., noise=.)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=, n_features=, centers=)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=, n_classes=, shuffle=True, random_state=None)
no_structure = np.random.rand(N, ), np.random.rand(N, ) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

参考:

实现一个单隐层神经网络python的更多相关文章

  1. 用C实现单隐层神经网络的训练和预测(手写BP算法)

    实验要求:•实现10以内的非负双精度浮点数加法,例如输入4.99和5.70,能够预测输出为10.69•使用Gprof测试代码热度 代码框架•随机初始化1000对数值在0~10之间的浮点数,保存在二维数 ...

  2. Neural Networks and Deep Learning(week3)Planar data classification with one hidden layer(基于单隐藏层神经网络的平面数据分类)

    Planar data classification with one hidden layer 你会学习到如何: 用单隐层实现一个二分类神经网络 使用一个非线性激励函数,如 tanh 计算交叉熵的损 ...

  3. 可变多隐层神经网络的python实现

    说明:这是我对网上代码的改写版本,目的是使它跟前一篇提到的使用方法尽量一致,用起来更直观些. 此神经网络有两个特点: 1.灵活性 非常灵活,隐藏层的数目是可以设置的,隐藏层的激活函数也是可以设置的 2 ...

  4. ubuntu之路——day13 只用python的numpy在较为底层的阶段实现单隐含层神经网络

    首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 ...

  5. CS224d 单隐层全连接网络处理英文命名实体识别tensorflow

    什么是NER? 命名实体识别(NER)是指识别文本中具有特定意义的实体,主要包括人名.地名.机构名.专有名词等.命名实体识别是信息提取.问答系统.句法分析.机器翻译等应用领域的重要基础工具,作为结构化 ...

  6. Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 3. 浅层神经网络)

     =================第3周 浅层神经网络=============== ===3..1  神经网络概览=== ===3.2  神经网络表示=== ===3.3  计算神经网络的输出== ...

  7. tensorflow-LSTM-网络输出与多隐层节点

    本文从tensorflow的代码层面理解LSTM. 看本文之前,需要先看我的这两篇博客 https://www.cnblogs.com/yanshw/p/10495745.html 谈到网络结构 ht ...

  8. 神经网络结构设计指导原则——输入层:神经元个数=feature维度 输出层:神经元个数=分类类别数,默认只用一个隐层 如果用多个隐层,则每个隐层的神经元数目都一样

    神经网络结构设计指导原则 原文   http://blog.csdn.net/ybdesire/article/details/52821185   下面这个神经网络结构设计指导原则是Andrew N ...

  9. 1.4激活函数-带隐层的神经网络tf实战

    激活函数 激活函数----日常不能用线性方程所概括的东西 左图是线性方程,右图是非线性方程 当男生增加到一定程度的时候,喜欢女生的数量不可能无限制增加,更加趋于平稳 在线性基础上套了一个激活函数,使得 ...

随机推荐

  1. 201521123121 《Java程序设计》第12周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. Java流(Stream).文件(File)和IO Java.io包几乎包含了所有操作输入.输出需要的类.所有 ...

  2. 201521123026《Java程序设》 第10周学习总结

    1. 本章学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 1.守护线程:setDaemon(true or false),如果所有前台线程死亡,守护线程自动结束,一般 ...

  3. java数据类型与二进制

    在java中 Int 类型的变量占 4个字节 Long 类型的变量占8个字节 一个程序就是一个世界,变量是这个程序的基本单位. Java基本数据类型 1.        整数类型 2.        ...

  4. python webdriver 环境搭建详解

    学了一个月用java编写selenium driver 测试脚本,也将公司做的系统基本可用的模块做了一次自动化,虽然写的比较简陋,但是基本可用跑一遍,并用testNG生成了测试报告. 学习方式无非是: ...

  5. Java实现MD5加密_字符串加密_文件加密

    Java实现MD5加密,具体代码如下: package com.bstek.tools; import java.io.FileInputStream; import java.io.IOExcept ...

  6. Oracle-表的字段增加修改删除操作

    表结构修改 ALTER TABLE SCOTT.TEST RENAME TO TEST1--修改表名 ALTER TABLE SCOTT.TEST RENAME COLUMN NAME TO NAME ...

  7. OSGi-简介(01)

    OSGi是什么? OSGi联盟现在将OSGi定义为一种技术: OSGi技术是指一系列用于定义Java动态化组件系统的标准.这些标准通过为大型分布式系统以及嵌入式系统提供一种模块化架构减少了软件的复杂度 ...

  8. Eclipse 版本选择

    查看Eclipse的版本号: 1. 找到eclipse安装目录 2. 进入readme文件夹,打开readme_eclipse.html 3. readme_eclipse.html呈现的第二行即数字 ...

  9. Bootstrap对齐方式

    <p class="text-left">我居左</p> <p class="text-center">我居中</p& ...

  10. TCP/IP(一)之初识计算机网络

    前言 在一段时间里,都很想知道一台电脑怎么跟另一台电脑通信的,我发送一个qq给女朋友,怎么准确的发送过去的,又是怎么接受消息的. 接下来一段时间给大家慢慢分享关于计算机网络的相关知识. 一.局域网.广 ...