1 简述

1.1
    id3是一种基于决策树的分类算法,由J.Ross Quinlan
在1986年开发。id3根据信息增益,运用自顶向下的贪心策略
建立决策树。信息增益用于度量某个属性对样本集合分类的好坏程度。
由于采用了信息增益,id3算法建立的决策树规模比较小,
查询速度快。id3算法的改进是C4.5算法,C4.5算法可以
处理连续数据,采用信息增益率,而不是信息增益。
理解信息增益,需要先看一下信息熵。

1.2 信息熵
    信息熵是随机变量的期望。度量信息的不确定程度。
信息的熵越大,信息就越不容易搞清楚。处理信息就是
为了把信息搞清楚,就是熵减少的过程。
    Entropy(X) = -Sum(p(xi) * log(p(xi))) {i: 0 <= i <= n}
    p(x)是概率密度函数;对数是以2为底;

1.3 信息增益
    用于度量属性A降低样本集合X熵的贡献大小。信息增益
越大,越适于对X分类。
    Gain(A, X) = Entropy(X) - Sum(|Xv| / |X| * Entropy(Xv))  {v: A的所有可能值}
    Xv表示A中所有为v的值;|Xv|表示A中所有为v的值的数量;

2 id3算法流程
    输入:样本集合S,属性集合A
    输出:id3决策树。
    1) 若所有种类的属性都处理完毕,返回;否则执行2)
    2)计算出信息增益最大属性a,把该属性作为一个节点。
        如果仅凭属性a就可以对样本分类,则返回;否则执行3)
    3)对属性a的每个可能的取值v,执行一下操作:
        i.  将所有属性a的值是v的样本作为S的一个子集Sv;
        ii. 生成属性集合AT=A-{a};
        iii.以样本集合Sv和属性集合AT为输入,递归执行id3算法;

3 一个的例子
    3.1
    这个例子来源于Quinlan的论文。
    假设,有种户外活动。该活动能否正常进行与各种天气因素有关。
    不同的天气因素组合会产生两种后果,也就是分成2类:能进行活动或不能。
    我们用P表示该活动可以进行,N表示该活动无法进行。
    下表描述样本集合是不同天气因素对该活动的影响。

                     Attribute                       class
    outlook    temperature    humidity    windy 
    ---------------------------------------------------------
    sunny       hot             high           false       N
    sunny       hot             high           true         N
    overcast   hot             high           false       P
    rain           mild           high           false       P
    rain           cool           normal      false       P
    rain           cool           normal      true         N
    overcast   cool           normal      true         P
    sunn y      mild           high           false       N
    sunny       cool           normal      false       P
    rain           mild           normal      false       P 
    sunny       mild           normal      true         P 
    overcast   mild           high           true         P 
    overcast   hot             normal      false       P 
    rain           mild           high           true        N

    3.2
    该活动无法进行的概率是:5/14
    该活动可以进行的概率是:9/14
    因此样本集合的信息熵是:-5/14log(5/14) - 9/14log(9/14) = 0.940

    3.3
    接下来我们再看属性outlook信息熵的计算:
    outlook为sunny时,
    该活动无法进行的概率是:3/5
    该活动可以进行的概率是:2/5
    因此sunny的信息熵是:-3/5log(3/5) - 2/5log(2/5) = 0.971

    同理可以计算outlook属性取其他值时候的信息熵:
    outlook为overcast时的信息熵:0
    outlook为rain时的信息熵:0.971

    属性outlook的信息增益:gain(outlook) = 0.940 - (5/14*0.971 + 4/14*0 + 5/14*0.971) = 0.246

    相似的方法可以计算其他属性的信息增益:
    gain(temperature) = 0.029
    gain(humidity) = 0.151
    gain(windy) = 0.048

    信息增益最大的属性是outlook。

    3.4
    根据outlook把样本分成3个子集,然后把这3个子集和余下的属性
    作为输入递归执行算法。

原文链接:http://blog.csdn.net/leeshuheng/article/details/7777722

ID3算法(1)的更多相关文章

  1. 决策树ID3算法的java实现(基本试用所有的ID3)

    已知:流感训练数据集,预定义两个类别: 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 1 是(1) 是(1) 正常(0) 否(0) 2 是(1) 是(1 ...

  2. 数据挖掘之决策树ID3算法(C#实现)

    决策树是一种非常经典的分类器,它的作用原理有点类似于我们玩的猜谜游戏.比如猜一个动物: 问:这个动物是陆生动物吗? 答:是的. 问:这个动物有鳃吗? 答:没有. 这样的两个问题顺序就有些颠倒,因为一般 ...

  3. 决策树 -- ID3算法小结

          ID3算法(Iterative Dichotomiser 3 迭代二叉树3代),是一个由Ross Quinlan发明的用于决策树的算法:简单理论是越是小型的决策树越优于大的决策树. 算法归 ...

  4. 机器学习笔记----- ID3算法的python实战

    本文申明:本文原创,如有转载请申明.数据代码来自实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. Hell ...

  5. 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)

    1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...

  6. 决策树笔记:使用ID3算法

    决策树笔记:使用ID3算法 决策树笔记:使用ID3算法 机器学习 先说一个偶然的想法:同样的一堆节点构成的二叉树,平衡树和非平衡树的区别,可以认为是"是否按照重要度逐渐降低"的顺序 ...

  7. ID3算法 决策树的生成(2)

    # coding:utf-8 import matplotlib.pyplot as plt import numpy as np import pylab def createDataSet(): ...

  8. ID3算法 决策树的生成(1)

    # coding:utf-8 import matplotlib.pyplot as plt import numpy as np import pylab def createDataSet(): ...

  9. 决策树的基本ID3算法

    一  ID3算法的大致思想 基本的ID3算法是通过自顶向下构造决策树来进行学习的.我们首先思考的是树的构造从哪里开始,这就涉及到选择属性进行树的构造了,那么怎样选择属性呢?为了解决这个问题,我们使用统 ...

  10. Python实现ID3算法

    自己用Python写的数据挖掘中的ID3算法,现在觉得Python是实现算法的最好工具: 先贴出ID3算法的介绍地址http://wenku.baidu.com/view/cddddaed0975f4 ...

随机推荐

  1. public/private/protected的具体区别

    在说明这四个关键字之前,我想就class之间的关系做一个简单的定义,对于继承自己的class,base class可以认为他们都是自己的子女,而对于和自己一个目录下的classes,认为都是自己的朋友 ...

  2. java模拟一个抽奖程序

    今天用一个程序模拟一个从1-32之间,随机抽取7组号码的抽奖程序 * 需要使用Java的图形界面知识 * 窗口  JFrame * 面板  JPanel * 显示文本信息的标签  JLabel * 文 ...

  3. 创建PDF模板,java添加内容、导出下载PDF

    本文主要内容是:用java在pdf模板中加入数据,图片. 废话不多说,举个非常简单的例子: 首先创建word文档,导出PDF. 用 软件adobe acrobat打开,操作步骤如图: 在指定位置添加文 ...

  4. 基于.net的微服务架构的开发测试环境运维实践

    眼下,做互联网应用,最火的架构是微服务,最热的研发管理就是DevOps, 没有之一.微服务.DevOps已经被大量应用,它们已经像传说中的那样,可以无所不能.特来电云平台,通过近两年多的实践,发现完全 ...

  5. android studio友盟分享

    这个东西搞了整整两天真是把我搞郁闷着了,官方demo下载后,根据提示的错误,修改了一个小bug之后,便能直接运行,但是不管我如何集成到自己app上,分享时APP都会黑屏Crash,并且代码都与官方de ...

  6. 智慧航空AI大赛-阿里云算法大赛总结 第一赛季总结

    [以前的文章]最后一公里极速配送 - 阿里云算法大赛总结 总结一下新的教训 1.由于都是NP难题,获得最优解用常规的方法非常困难,对于不是算法科班出身的人来说,首先应该到网络上寻找一下论文,是否有一些 ...

  7. 强连通分量tarjan缩点——POJ2186 Popular Cows

    这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定 ...

  8. python 一个包中的文件调用另外一个包文件 实例

    python不同文件夹中模块的引用调用顺序,被调用的模块中①有类的 模块.类().方法()   ②无类的:模块.方法() test包中testIm.py 调用 test1包中testIm1.py中的方 ...

  9. UITabbarController左右滑动切换标签页

    UITabbarController左右滑动切换标签页 每个Tabbar ViewController都要添加如下代码,建议在基类中添加:ViewDidLoadUISwipeGestureRecogn ...

  10. PIVOT行转列

    PIVOT通过将表达式某一列中的唯一值转换为输出中的多个列来旋转表值表达式,并在必要时对最终输出中所需的任何其余列值执行聚合. 测试数据 INSERT INTO [TestRows2Columns] ...