Programming Contest Problem Types
![]() |
Programming Contest Problem Types |
Hal Burch conducted an analysis over spring break of 1999 and made an amazing discovery: there are only 16 types of programming contest problems! Furthermore, the top several comprise almost 80% of the problems seen at the IOI. Here they are:
- Dynamic Programming
- Greedy
- Complete Search
- Flood Fill
- Shortest Path
- Recursive Search Techniques
- Minimum Spanning Tree
- Knapsack
- Computational Geometry
- Network Flow
- Eulerian Path
- Two-Dimensional Convex Hull
- BigNums
- Heuristic Search
- Approximate Search
- Ad Hoc Problems
The most challenging problems are Combination Problems which involve a loop (combinations, subsets, etc.) around one of the above algorithms - or even a loop of one algorithm with another inside it. These seem extraordinarily tricky to get right, even though conceptually they are "obvious".
If you can master solving just 40% of these problem types, you can almost guarantee a silver medal at the IOI. Mastering 80% moves you into the gold range almost for sure. Of course, `mastery' is a tough nut to crack! We'll be supplying a plethora of problems so that you can hone your skills in the quest for international fame.
- 动态编程(DP)
- 贪婪算法
- 枚举搜索
- 漫水填充算法(Flood Fill)
- 最短路径
- 递归回溯搜索技术
- 最小生成树
- 背包问题
- 计算几何
- 网络流
- 欧拉回路
- 二维凸包问题
- 大数问题
- 启发式搜索
- 近似搜索
- 杂项题
最有挑战性的问题是牵涉了环(组合、子集等)的组合问题,围绕着某个上面的问题,或甚至是一个算法中又有其他算法在里面的环。即使这些问题从概念上看都是“显而易见的”,但它们似乎都非常难以做对。
如果你可以精通40%的上述类型问题的解法,你大概可以保证能在IOI拿银牌。精通80%的话,你几乎可以肯定就是金牌的层次。当然了,“精通”是一件很困难的事情!我们将提供大量的问题,你可以用来磨练你的能力以追求国际奖项。
Programming Contest Problem Types的更多相关文章
- Codeforces 1090A - Company Merging - [签到水题][2018-2019 Russia Open High School Programming Contest Problem A]
题目链接:https://codeforces.com/contest/1090/problem/A A conglomerate consists of n companies. To make m ...
- Codeforces 1090B - LaTeX Expert - [字符串模拟][2018-2019 Russia Open High School Programming Contest Problem B]
题目链接:https://codeforces.com/contest/1090/problem/B Examplesstandard input The most famous characters ...
- Codeforces 1090D - Similar Arrays - [思维题][构造题][2018-2019 Russia Open High School Programming Contest Problem D]
题目链接:https://codeforces.com/contest/1090/problem/D Vasya had an array of n integers, each element of ...
- Codeforces 1090M - The Pleasant Walk - [签到水题][2018-2019 Russia Open High School Programming Contest Problem M]
题目链接:https://codeforces.com/contest/1090/problem/M There are n houses along the road where Anya live ...
- 2019-2020 ACM-ICPC Brazil Subregional Programming Contest Problem A Artwork (并查集)
题意:有一个矩形,有\(k\)个警报器,警报器所在半径\(r\)内不能走,问是否能从左上角走到右下角. 题解:用并查集将所有相交的圆合并,那么不能走的情况如下图所示 所以最后查询判断一下即可. 代码: ...
- 2019-2020 ACM-ICPC Brazil Subregional Programming Contest Problem M Maratona Brasileira de Popcorn (二分)
题意:有\(n\)袋爆米花,某个队伍有\(c\)个队员,每个队员每秒做多可以吃\(t\)粒爆米花,但一袋爆米花只能由一个队员吃完,并且一个队员只能吃连续的一袋或几袋,不能隔着吃某一袋,求将所有爆米花吃 ...
- The Ninth Hunan Collegiate Programming Contest (2013) Problem A
Problem A Almost Palindrome Given a line of text, find the longest almost-palindrome substring. A st ...
- The Ninth Hunan Collegiate Programming Contest (2013) Problem F
Problem F Funny Car Racing There is a funny car racing in a city with n junctions and m directed roa ...
- The Ninth Hunan Collegiate Programming Contest (2013) Problem H
Problem H High bridge, low bridge Q: There are one high bridge and one low bridge across the river. ...
随机推荐
- Android 开发环境在 Windows7 下的部署安装
Android SDK Android SDK 为 Android 应用的开发.测试和调试提了必要的API库和开发工具. ADT Bundle 下载 如果你是一个android 开发新手,推荐你下载使 ...
- .NET Core采用的全新配置系统[8]: 如何实现配置与源文件的同步
配置的同步涉及到两个方面:第一,对原始的配置文件实施监控并在其发生变化之后从新加载配置:第二,配置重新加载之后及时通知应用程序进而使后者能够使用最新的配置.接下来我们利用一个简单的.NET Core控 ...
- MySQL笔记---视图,存储过程, 触发器的使用入门
大二学数据库的时候,只是隐约听到老师提起过视图啊,存储过程啊,触发器啊什么的,但只是淡淡的记住了名字,后来自己做些小项目,小程序,也没有用上过,都只是简单的建表,关联表之类的,导致我对这些东西的理解只 ...
- Anliven - To-Do List
2016 - December Name Type Start Deadline Status Output Comments Last Review SQL必知必会(第4版) Book 2016-1 ...
- 分布式系统理论进阶 - Paxos
引言 <分布式系统理论基础 - 一致性.2PC和3PC>一文介绍了一致性.达成一致性需要面临的各种问题以及2PC.3PC模型,Paxos协议在节点宕机恢复.消息无序或丢失.网络分化的场景下 ...
- PHP实现全排列(递归算法)
算法描述:如果用P表示n个元素的全排列,而Pi表示n个元素中不包含元素i的全排列,(i)Pi表示在排列Pi前面加上前缀i的排列,那么n个元素的全排列可递归定义为: ① 如果n=1,则排列P只有一 ...
- JS性能优化
1.不要在同一行声明多个变量. 2.请使用 ===/!==来比较true/false或者数值 3.使用对象字面量替代new Array这种形式 4.不要使用全局函数. 5.Switch语句必须带有de ...
- MVC 传值
1.ViewBag Controller:ViewBag.Message = "Hello, Word"; View:@ViewBag.Message 注:View ...
- C#开发微信门户及应用(5)--用户分组信息管理
在上个月的对C#开发微信门户及应用做了介绍,写过了几篇的随笔进行分享,由于时间关系,间隔了一段时间没有继续写这个系列的博客了,并不是对这个方面停止了研究,而是继续深入探索这方面的技术,为了更好的应用起 ...
- 《连载 | 物联网框架ServerSuperIO教程》2.服务实例的配置参数说明
1.C#跨平台物联网通讯框架ServerSuperIO(SSIO)介绍 <连载 | 物联网框架ServerSuperIO教程>1.4种通讯模式机制 一.综述 SuperIO(SIO)定位 ...