Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

    B

L

 == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

Sample Input

5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

Hint

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

   B

(P-1)

 == 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

   B

(-m)

 == B

(P-1-m)

(mod P) .


 

题解

这道题是裸的BSGS,具体内容可以看hzw的博客—传送门

 #include<algorithm>
#include<map>
#include<cstdio>
#include<cstring>
#include<cmath>
#define ll long long
using namespace std;
ll p,b,n,s,x,y,m,k;
int exgcd(ll a,ll b){
if (!b){
x=; y=;
return a;
}
int d=exgcd(b,a%b);
ll t=x; x=y; y=t-(a/b)*y;
return d;
}
map<int,int> h;
int main(){
while (~scanf("%lld%lld%lld",&p,&b,&n)){
h.clear();
ll t=(ll)sqrt(p);
s=; h[]=t;
for (int i=;i<=t-;i++){
s=s*b%p;
if (!h[s]) h[s]=i;
}
s=s*b%p;
ll l=1e10,ans=n;
exgcd(s,p);
x=(x+p)%p;
for (int i=;i<=t;i++){
if (h[ans]){
if (h[ans]==t) h[ans]=;
l=i*t+h[ans];
break;
}
ans=ans*x%p;
}
if (l!=1e10) printf("%lld\n",l);
else puts("no solution");
}
return ;
}

POJ-2417-Discrete Logging(BSGS)的更多相关文章

  1. POJ 2417 Discrete Logging(离散对数-小步大步算法)

    Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 ...

  2. POJ 2417 Discrete Logging (Baby-Step Giant-Step)

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2819   Accepted: 1386 ...

  3. POJ - 2417 Discrete Logging(Baby-Step Giant-Step)

    d. 式子B^L=N(mod P),给出B.N.P,求最小的L. s.下面解法是设的im-j,而不是im+j. 设im+j的话,貌似要求逆元什么鬼 c. /* POJ 2417,3243 baby s ...

  4. BZOJ 3239 Discrete Logging(BSGS)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3239 [题目大意] 计算满足 Y^x ≡ Z ( mod P) 的最小非负整数 [题解 ...

  5. BSGS算法+逆元 POJ 2417 Discrete Logging

    POJ 2417 Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4860   Accept ...

  6. poj 2417 Discrete Logging ---高次同余第一种类型。babystep_gaint_step

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2831   Accepted: 1391 ...

  7. POJ 2417 Discrete Logging ( Baby step giant step )

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3696   Accepted: 1727 ...

  8. POJ 2417 Discrete Logging BSGS

    http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % ...

  9. poj 2417 Discrete Logging(A^x=B(mod c),普通baby_step)

    http://poj.org/problem?id=2417 A^x = B(mod C),已知A,B.C.求x. 这里C是素数,能够用普通的baby_step. 在寻找最小的x的过程中,将x设为i* ...

  10. POJ 2417 Discrete Logging 离散对数

    链接:http://poj.org/problem?id=2417 题意: 思路:求离散对数,Baby Step Giant Step算法基本应用. 下面转载自:AekdyCoin [普通Baby S ...

随机推荐

  1. java值传递与引用传递实例

    public class Test2 { public static void main(String[] args) { int[] arr=new int[5]; arr[0]=10; arr[1 ...

  2. 编译安装LAMP并实现wordpress

    author:JevonWei 版权声明:原创作品 软件环境 centos7.3 apr-1.5.2.tar.bz2 apr-util-1.5.4.tar.bz2 httpd-2.4.27.tar.b ...

  3. 【Linux相识相知】yum的配置使用和程序包的编译安装

    在上一篇博客中,写到了如何使用rpm命令来安装.卸载软件等,但是大家都知道,各个软件包之间可能存在依赖关系,如果安装某个软件需要额外的依赖其他若干的包,那么我们就需要将其他额外的包一个一个的安装上去, ...

  4. 页面性能优化和高频dom操作

    一.DOM操作影响页面性能的核心问题 通过js操作DOM的代价很高,影响页面性能的主要问题有如下几点: 访问和修改DOM元素 修改DOM元素的样式,导致重绘或重排 通过对DOM元素的事件处理,完成与用 ...

  5. 【Java IO流】对象的序列化和反序列化

    对象的序列化和反序列化 1)对象序列化,就是将Object对象转换成byte序列,反之叫对象的反序列化. 2)序列化流(ObjectOutputStream),是字节的过滤流—— writeObjec ...

  6. 团队作业8——第二次项目冲刺(Beta阶段)--5.19 first day

    团队作业8--第二次项目冲刺(Beta阶段)--5.19 Day one: 会议照片 项目进展 由于今天是Beta版本项目冲刺的第一天,所以没有昨天已完成任务.以下是今日具体的任务安排. 队员 今日计 ...

  7. 第二次项目冲刺(Beta阶段)5.21

    1.提供当天站立式会议照片一张 会议内容: ①检查前一天的任务情况,做出自我反省. ②制定新一轮的任务计划. 2.每个人的工作 (1)工作安排 队员 今日进展 明日安排 王婧 #53实现多对多查重 # ...

  8. 201521123012 《Java程序设计》第七周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 参考资料: XMind 2. 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代 ...

  9. 201521123032 《Java程序设计》第4周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. 本周学习了继承,了解其中的父类与子类.了解到类,以及如何识别类,对于名词可以考虑是否创建相应 ...

  10. 201521044091 《Java程序设计》第3周学习总结

    1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识组织起来.请使用纸笔或者下面的工具画出本周学习到的知识点.截图或者拍照上传. 本周学习总结 ...