MoNoSLAM:https://github.com/hanmekim/SceneLib2

以扩展卡尔曼滤波为后端,追踪前端非常稀疏的特征点,以相机的当前状态和所有路标点为状态量,更新其均值和协方差。

优点:在2007年,随着计算机性能的提升,以及该系统用稀疏的方式处理图像,使得该方案使得SLAM系统能够在线运行。(之前的SLAM系统是基本不能在线运行的,只能靠机器人携带相机采集的数据,再离线进行定位和建图。)

缺点:MoNoSLAM存在应用场景窄,路标数量有限,系数特征点非常容易丢失等缺点,现在已经停止了对其开发。

PTAM( Parallel Tracking And Mapping )http://www.robots.ox.ac.uk/~gk/PTAM

主要原理是: 从摄影图像上捕捉特征点,然后检测出平面,在检测出的平面上建立虚拟的3D坐标,然后合成摄影图像和CG。其中,独特之处在于,立体平面的检测和图像的合成采用并行处理。

优点:提出并实现了跟踪与建图过程的并行化,将前后端分离,使用非线性优化方案,既可以实时的定位与建图,也可以在虚拟平面上叠加物体。

缺点:场景小,跟踪容易丢失。

ORB-SLAM(继承并改进PTAM)http://webdiis.unizar.es/~raulmur/orbslam/

优点:泛用性:支持单目,双目,RGB-D三种模式。整个系统围绕ORB特征进行计算,在效率与精度之间做到了平衡,并围绕特征点进行了优化。其回环检测算法可以有效地防止误差的积累。使用三个线程完成SLAM,取得了较好的跟踪和建图效果,能够保证轨迹和地图的全局一致性。

缺点:对于每幅图像都需要计算ORB特征耗时大。三线程给CPU带来较大负担,在一直到嵌入式设备上有一定的困难,ORB-SLAM的建图为稀疏特征点,只能满足定位功能。

LSD-SLAM(Large Scale Direct monocular SLAM)

将单目直接发应用到了半稠密的单目SLAM中,不需要计算特征点,还能构建版稠密地图.

优点:直接法是针对像素进行的;对特征缺失区域不敏感,半稠密追踪可以保证追踪的实时性和稳定性;在cpu上实现了半稠密地图的重建。

缺点:对相机内参和曝光非常敏感,并且在相机快速运动时容易丢失,在回环检测部分,没有直接基于直接发实现,依赖特征点方程进行回环检测,尚未完全摆脱特征点的计算。

SVO( Semi-direct Visual Odoemtry )

基于稀疏直接法的视觉里程计,在实现中,使用了4x4的小块进行块匹配,估计相机资自身的运动。

优点:速度极快,在低端计算平台上也能达到实时性,适合计算平台受限的场合。

缺点:在平视相机中表现不佳;舍弃了后端优化和回环检测部分,SVO的位姿估计存在累计误差,并且丢失后不太容易进行重定位。

RTAB-MAP(RGB-D传感器上的SLAM方案)

给出了一套完整的RGB-D SLAM方案,目前可以直接从ROS中获得其二进制程序,在Google Project Tango上可以获得其APP直接使用。

优点:原理简单;支持RGB-D和双目传感器,且提供实时的定位和建图功能。

缺点:集成度高,庞大,在其上进行二次开发困难,适合作为SLAM应用而非研究使用。

视觉SLAM的方案总结的更多相关文章

  1. 83 项开源视觉 SLAM 方案够你用了吗?

    作者:吴艳敏 来源:83 项开源视觉 SLAM 方案够你用了吗? 前言 1. 本文由知乎作者小吴同学同步发布于https://zhuanlan.zhihu.com/p/115599978/并持续更新. ...

  2. (转) SLAM系统的研究点介绍 与 Kinect视觉SLAM技术介绍

          首页 视界智尚 算法技术 每日技术 来打我呀 注册     SLAM系统的研究点介绍 本文主要谈谈SLAM中的各个研究点,为研究生们(应该是博客的多数读者吧)作一个提纲挈领的摘要.然后,我 ...

  3. 视觉SLAM

    SLAM:Simultaneous Localization And Mapping.中文:同时定位与地图重建. 它是指搭载特定传感器的主体,在没有实验先验信息的情况下,于运动过程中建立环境的模型,同 ...

  4. 如何从零开始系统化学习视觉SLAM?

    由于显示格式问题,建议阅读原文:如何从零开始系统化学习视觉SLAM? 什么是SLAM? SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻 ...

  5. 高翔《视觉SLAM十四讲》从理论到实践

    目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Ei ...

  6. 视觉SLAM漫淡

    视觉SLAM漫谈 1.    前言 开始做SLAM(机器人同时定位与建图)研究已经近一年了.从一年级开始对这个方向产生兴趣,到现在为止,也算是对这个领域有了大致的了解.然而越了解,越觉得这个方向难度很 ...

  7. 激光SLAM Vs 视觉SLAM

    博客转载自:https://www.leiphone.com/news/201707/ETupJVkOYdNkuLpz.html 雷锋网(公众号:雷锋网)按:本文作者SLAMTEC(思岚科技公号sla ...

  8. 《视觉SLAM十四讲》第2讲

    目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经 ...

  9. 激光SLAM与视觉SLAM的特点

    激光SLAM与视觉SLAM的特点 目前,SLAM技术被广泛运用于机器人.无人机.无人驾驶.AR.VR等领域,依靠传感器可实现机器的自主定位.建图.路径规划等功能.由于传感器不同,SLAM的实现方式也有 ...

随机推荐

  1. 找出共同好友 - 数据挖掘 - Scala版

    大家好,关于“找出共同好友”的算法,网上有不少语言的实现,今天有空之余,自己研究了下Scala算法的写法 完整代码可以参考Git地址:https://github.com/benben7466/Spa ...

  2. apache编译安装 httpd 2.2 httpd 2.4

    #apache编译安装#httpd 2.2 , httpd 2.4 #!/bin/sh #apache编译安装 #httpd 2.2 , httpd 2.4 #centos #rpm -e httpd ...

  3. 拆分字符and读取properties文件

    在方法里面建立properties对象 Properties pps = new Properties(); 调用.load()方法 pps.load(new FileInputStream(&quo ...

  4. 翻译连载 | 附录 C:函数式编程函数库-《JavaScript轻量级函数式编程》 |《你不知道的JS》姊妹篇

    原文地址:Functional-Light-JS 原文作者:Kyle Simpson-<You-Dont-Know-JS>作者 关于译者:这是一个流淌着沪江血液的纯粹工程:认真,是 HTM ...

  5. Java数据结构和算法(八)——递归

    记得小时候经常讲的一个故事:从前有座山,山上有座庙,庙里有一个老和尚和一个小和尚,一天,老和尚给小和尚讲了一个故事,故事内容是“从前有座山,山上有座庙,庙里有一个老和尚和一个小和尚,一天,老和尚给小和 ...

  6. Codeforces 869E The Untended Antiquity

    题意:给定一个网格图,三种操作:1.在(r1,c1,r2,c2)处建围墙.2.删除(r1,c1,r2,c2)处的围墙.3.询问两点是否可达 思路比较巧妙,将围墙内的点赋加一个权值,询问的时候判断两个点 ...

  7. Solr服务在Linux上的搭建

    一.系统环境 注:欢迎大家转载,非商业用途请在醒目位置注明本文链接和作者名dijia478即可,商业用途请联系本人dijia478@163.com. CentOS-6.7-i386-bin-DVD1 ...

  8. android应用集成google登录

        集成google登录之前需要有一下三点要求,只有具备一下两点要求才能集成google登录:         1,android 运行版本4.0及更新版本         2,android 设 ...

  9. 谷哥的小弟学前端(11)——JavaScript基础知识(2)

    探索Android软键盘的疑难杂症 深入探讨Android异步精髓Handler 具体解释Android主流框架不可或缺的基石 站在源代码的肩膀上全解Scroller工作机制 Android多分辨率适 ...

  10. 王立平--WebView的缓存机制

    WebView的缓存能够分为页面缓存和数据缓存. 1.   页面缓存是指载入一个网页时的html.JS.CSS等页面或者资源数据. 这些缓存资源是因为浏览器的行为而产生.开发人员仅仅能通过配置HTTP ...