如何用快速傅里叶变换实现DFT
【目标】
如何以 \(O(N \log N)\) 的效率将系数多项式转换为点值多项式。
【前置技能】
众所周知,\(x^n=1\)的根有n个,而且它们分别是\(e^{\frac{2*π*i}{n}}\),即在复平面内的坐标为\((cos(2*π*i),sin(2*π*i))\)。
为了方便描述,我们分别用\(ω_n^0\)~\(ω_n^{n-1}\)来描述这n个根。而且等会我们要算的,就是多项式A在这n个点处的点值。
我们由复数的性质可以得到一些公式:
\((ω_{2n}^{2k})=ω_n^k\)
\((ω_n^k)^2=ω_n^{2k}=ω_{n/2}^{k}\)
\(ω_n^{k+\frac{n}{2}}=-ω_n^k\)
【递归计算点值】
假设我们有一个长度为n的多项式\(A(x)=a_0+a_1*x...a_{n-1}*x^{n-1}\),现在我们设一个过程F(A)来递归地计算\(A(x)\)的点值多项式(而且点值的自变量就是上述n个单位复数根)。为了方便计算,我们设n为2的幂次。
简单地把\(A(x)\)拆分成两个多项式,即设:
\(A_0(x)=a_0+a_2*x+a_4*x^2...+a_{n/2-2}*x^{\frac{n}{2}-1}\)
\(A_1(x)=a_1+a_3*x+a_5*x^2...+a_{n/2-1}*x^{\frac{n}{2}-1}\)
容易发现\(A(x)=A0(x^2)+x*A1(x^2)\)
我们要求的是对于所有k,\(ω_n^k\) 处的点值。
且\(A(ω_n^k)=A_0((ω_n^k)^2)+ω_n^k*A_1((ω_n^k)^2)\)
先求所有的k满足\(k∈[0,n/2)\)
化简易得\(A(ω_n^k)=A_0(ω_{\frac{n}{2}}^k)+ω_n^k*A_1(ω_{\frac{n}{2}}^k)\)
而且对于\(k∈[0,n/2)\),我们也可以得到
\(A(ω_n^{k+\frac{n}{2}})=A_0(ω_n^{2k+n})+ω_n^{k+\frac{n}{2}}*A_1(ω_n^{2k+n})\)
\(=A_0(ω_n^{2k})-ω_n^{k}*A_1(ω_n^{2k})=A_0(ω_{\frac{n}{2}}^k)-ω_n^{k}*A_1(ω_{\frac{n}{2}}^k)\)
此时我们已经能求出所有的点值了,而且我们要用到的条件就是:
\(A_0(ω_{\frac{n}{2}}^k)\) 和 \(A_1(ω_{\frac{n}{2}}^k)\) \(k∈[0,n/2)\)
容易发现这就是子问题,我们只需直接递归 \(F(A_0)\) 和 \(F(A_1)\) 即可。
由主定理,得效率为\(T(N)=O(N)+2*T(\frac{n}{2})=O(N \log N)\)
如何用快速傅里叶变换实现DFT的更多相关文章
- 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w
现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...
- 快速傅里叶变换(FFT)学习笔记(未完待续)
目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...
- 【清橙A1084】【FFT】快速傅里叶变换
问题描述 离散傅立叶变换在信号处理中扮演者重要的角色.利用傅立叶变换,可以实现信号在时域和频域之间的转换. 对于一个给定的长度为n=2m (m为整数) 的复数序列X0, X1, …, Xn-1,离散傅 ...
- 快速傅里叶变换FFT
多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...
- 快速傅里叶变换(FFT)算法【详解】
快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 快速傅里叶变换 & 快速数论变换
快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...
- 「快速傅里叶变换(FFT)」学习笔记
FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...
- 快速傅里叶变换FFT& 数论变换NTT
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...
随机推荐
- R语言的高质量图形渲染库Cairo(转)
前言 R语言不仅在统计分析,数据挖掘领域,计算能力强大.在数据可视化上,也不逊于昂贵的商业.当然,背后离不开各种开源软件包的支持,Cairo就是这样一个用于矢量图形处理的类库. Cairo可以创建高质 ...
- php curl_setopt的相关设置查询手册
bool curl_setopt (int ch, string option, mixed value) curl_setopt()函数将为一个CURL会话设置选项.option参数是你想要的设置, ...
- 快学scala
scala 1. scala的由来 scala是一门多范式的编程语言,一种类似java的编程语言[2] ,设计初衷是要集成面向对象编程和函数式编程的各种特性. java和c++的进化速度已经大不如 ...
- JavaScript设计模式_03_代理模式
代理模式是非常常见的模式,比如我们使用的VPN工具,明星的经纪人,都是代理模式的例子.但是,有人会疑问,明明可以直接访问对象,为什么中间还要加一个壳呢?这也就说到了代理模式的好处.在我看来,代理模式最 ...
- java之内部类
最近学了java,对内部类有一点拙见,现在分享一下 所谓内部类(nested classes),即:面向对象程序设计中,可以在一个类的内部定义另一个类. 内部类不是很好理解,但说白了其实也就是一个类中 ...
- 【源码分享】jquery+css实现侧边导航栏
jquery+css实现侧边导航栏 最近做项目的时候,突然想用一个侧边导航栏,网上找了几个插件,有的太丑而且不太符合我的预期.与其修改别人的代码,不如自己来写一个了.废话不多说先上图,感兴趣的请继续看 ...
- python之路第一篇
一.python环境的搭建 1.window下环境的搭建 (1).在 https://www.python.org/downloads/ 下载自己系统所需要的python版本 (2).安装python ...
- Java - byte[] 和 String互相转换
通过用例学习Java中的byte数组和String互相转换,这种转换可能在很多情况需要,比如IO操作,生成加密hash码等等. 除非觉得必要,否则不要将它们互相转换,他们分别代表了不同的数据,专门服务 ...
- 移动办公OA系统
好久没有更新文章了,总觉得心里空空的,最近由于工作的原因,没有来的及及时更新,总感觉应该把学习到的东西做个记录,供大家学习,也供自己复习,温故而知新.今天趁着周末休息时间,把自己最近在公司的做的项目做 ...
- Nignx入门location、root配置
nginx的配置.首当其冲的就是location配置了,下面是笔记参考的博文链接 http://www.cnblogs.com/sunkeydev/p/5225051.html location匹 ...