【目标】

  如何以 \(O(N \log N)\) 的效率将系数多项式转换为点值多项式。

【前置技能】

  众所周知,\(x^n=1\)的根有n个,而且它们分别是\(e^{\frac{2*π*i}{n}}\),即在复平面内的坐标为\((cos(2*π*i),sin(2*π*i))\)。

  为了方便描述,我们分别用\(ω_n^0\)~\(ω_n^{n-1}\)来描述这n个根。而且等会我们要算的,就是多项式A在这n个点处的点值。

  我们由复数的性质可以得到一些公式:

  \((ω_{2n}^{2k})=ω_n^k\)

  \((ω_n^k)^2=ω_n^{2k}=ω_{n/2}^{k}\)

  \(ω_n^{k+\frac{n}{2}}=-ω_n^k\)

【递归计算点值】

  假设我们有一个长度为n的多项式\(A(x)=a_0+a_1*x...a_{n-1}*x^{n-1}\),现在我们设一个过程F(A)来递归地计算\(A(x)\)的点值多项式(而且点值的自变量就是上述n个单位复数根)。为了方便计算,我们设n为2的幂次。

  简单地把\(A(x)\)拆分成两个多项式,即设:

  \(A_0(x)=a_0+a_2*x+a_4*x^2...+a_{n/2-2}*x^{\frac{n}{2}-1}\)

  \(A_1(x)=a_1+a_3*x+a_5*x^2...+a_{n/2-1}*x^{\frac{n}{2}-1}\)

  容易发现\(A(x)=A0(x^2)+x*A1(x^2)\)

  我们要求的是对于所有k,\(ω_n^k\) 处的点值。

  且\(A(ω_n^k)=A_0((ω_n^k)^2)+ω_n^k*A_1((ω_n^k)^2)\)

  先求所有的k满足\(k∈[0,n/2)\)

  化简易得\(A(ω_n^k)=A_0(ω_{\frac{n}{2}}^k)+ω_n^k*A_1(ω_{\frac{n}{2}}^k)\)

  而且对于\(k∈[0,n/2)\),我们也可以得到

  \(A(ω_n^{k+\frac{n}{2}})=A_0(ω_n^{2k+n})+ω_n^{k+\frac{n}{2}}*A_1(ω_n^{2k+n})\)

  \(=A_0(ω_n^{2k})-ω_n^{k}*A_1(ω_n^{2k})=A_0(ω_{\frac{n}{2}}^k)-ω_n^{k}*A_1(ω_{\frac{n}{2}}^k)\)

  此时我们已经能求出所有的点值了,而且我们要用到的条件就是:

  \(A_0(ω_{\frac{n}{2}}^k)\) 和 \(A_1(ω_{\frac{n}{2}}^k)\) \(k∈[0,n/2)\)

  容易发现这就是子问题,我们只需直接递归 \(F(A_0)\) 和 \(F(A_1)\) 即可。

  由主定理,得效率为\(T(N)=O(N)+2*T(\frac{n}{2})=O(N \log N)\)

如何用快速傅里叶变换实现DFT的更多相关文章

  1. 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w

    现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...

  2. 快速傅里叶变换(FFT)学习笔记(未完待续)

    目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...

  3. 【清橙A1084】【FFT】快速傅里叶变换

    问题描述 离散傅立叶变换在信号处理中扮演者重要的角色.利用傅立叶变换,可以实现信号在时域和频域之间的转换. 对于一个给定的长度为n=2m (m为整数) 的复数序列X0, X1, …, Xn-1,离散傅 ...

  4. 快速傅里叶变换FFT

    多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...

  5. 快速傅里叶变换(FFT)算法【详解】

    快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...

  6. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  7. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  8. 「快速傅里叶变换(FFT)」学习笔记

    FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...

  9. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

随机推荐

  1. Sampling Distributions and Central Limit Theorem in R(转)

    The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...

  2. ASP.NET Web API 自定义 HttpParameterBinding

    背景 问题的起因是这样的.群里面一个哥们儿发现在使用 ASP.NET WebAPI 时,不能在同一个方法签名中使用多次 FromBodyAttribute 这个 Attribute .正好我也在用 W ...

  3. centos5.5下mangodb启动报错glibc

    mangodb启动报错glibc找不到(centos5.5) 报错形式 [root@test-172-16-0-139-ip mongodb-server]# /data/mongodb-server ...

  4. 关于CSS样式优先级学习心得

    1.未重复时候,只要有都有格式显示 2.重复时,看权值: 权值:标签 1 <类10< ID 100 PS:(*权值 > 继承(表格属性一般无法继承,有些浏览器也不支持表格继承父标签) ...

  5. 限制容器的 Block IO - 每天5分钟玩转 Docker 容器技术(29)

    前面学习了如何限制容器对内存和CPU的使用,本节我们来看 Block IO. Block IO 是另一种可以限制容器使用的资源.Block IO 指的是磁盘的读写,docker 可通过设置权重.限制 ...

  6. cal日历工具的用法

    cal的基本语法:$ cal [month] [year] 1.显示当前月的日历 $ cal 2.显示某年的日历 $ cal 2015 3.显示某年某月日历 $ cal 12 2015 =-=-=-= ...

  7. Rest模式get,put,post,delete含义与区别(转)

    POST   /uri     创建 DELETE /uri/xxx 删除 PUT    /uri/xxx 更新或创建 GET    /uri/xxx 查看 GET操作是安全的.所谓安全是指不管进行多 ...

  8. Angular中使用Swiper不能滑动的解决方法

    Swiper是目前较为流行的移动端触摸滑动插件,因为其简单好用易上手,很受很多设计师的欢迎. 今天在使用Swiper的时候遇到这个问题: 使用angularjs动态循环生成swiper-slide类, ...

  9. 【 js 基础 】Javascript “继承”

    是时候写一写 "继承"了,为什么加引号,因为当你阅读完这篇文章,你会知道,说是 继承 其实是不准确的. 一.类1.传统的面向类的语言中的类:类/继承 描述了一种代码的组织结构形式. ...

  10. php倒计时防刷新

    <?php //php的时间是以秒算.js的时间以毫秒算 date_default_timezone_set("Asia/Hong_Kong");//地区 //配置每天的活动 ...