目录

概述

  1. Spark SQL是Spark的结构化数据处理模块。
  2. Spark SQL特点
    • 数据兼容:可从Hive表、外部数据库(JDBC)、RDD、Parquet文件、JSON文件获取数据,可通过Scala方法或SQL方式操作这些数据,并把结果转回RDD。
    • 组件扩展:SQL语法解析器、分析器、优化器均可重新定义。
    • 性能优化:内存列存储、动态字节码生成等优化技术,内存缓存数据。
    • 多语言支持:Scala、Java、Python、R。

原理

组成

  1. Catalyst优化:优化处理查询语句的整个过程,包括解析、绑定、优化、物理计划等,主要由关系代数(relation algebra)、表达式(expression)以及查询优化(query optimization)组成。
  2. Spark SQL内核:处理数据的输入输出,从不同数据源(结构化数据Parquet文件JSON文件、Hive表、外部数据库、已有RDD)获取数据,执行查询(expression of queries),并将查询结果输出成DataFrame。
  3. Hive支持:对Hive数据的处理,主要包括HiveQL、MetaStore、SerDes、UDFs等。

执行流程

  1. SqlParser对SQL语句解析,生成Unresolved逻辑计划(未提取Schema信息);
  2. Catalyst分析器结合数据字典(catalog)进行绑定,生成Analyzed逻辑计划,过程中Schema Catalog要提取Schema信息;
  3. Catalyst优化器对Analyzed逻辑计划优化,按照优化规则得到Optimized逻辑计划;

    与Spark Planner交互,应用策略(strategy)到plan,使用Spark Planner将逻辑计划转换成物理计划,然后调用next函数,生成可执行物理计划。

性能

API

应用程序模板

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.hive.HiveContext

object Test {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("Test")
    val sc = new SparkContext(conf)
    val sqlContext = new HiveContext(sc)

    // ...
  }
}

通用读写方法

  1. Spark SQL内置数据源短名称有json、parquet、jdbc,默认parquet(通过“spark.sql.sources.default”配置)。
  2. 保存模式:
Scala/Java Python 说明
SaveMode.ErrorIfExists "error" 默认,如果数据库已经存在,抛出异常
SaveMode.Append "append" 如果数据库已经存在,追加DataFrame数据
SaveMode.Overwrite "overwrite" 如果数据库已经存在,重写DataFrame数据
SaveMode.Ignore "ignore" 如果数据库已经存在,忽略DataFrame数据
  1. 读写文件代码(统一使用sqlContext.read和dataFrame.write)模板:
val dataFrame = sqlContext.read.format("数据源名称").load("文件路径")
val newDataFrame = dataFrame // 操作数据得到新DataFrame
newDataFrame.write.format("数据源名称").save("文件路径")

RDD转为DataFrame

  1. 方法1

    • 方法:使用反射机制推断RDD Schema。
    • 场景:运行前知道Schema。
    • 特点:代码简洁。
    • 示例:
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext

object Test {

    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setAppName("Test")
        val sc = new SparkContext(conf)
        val sqlContext = new SQLContext(sc)

        // 将一个RDD隐式转换为一个DataFrame
        import sqlContext.implicits._
        // 使用case定义Schema(不能超过22个属性)
        case class Person(name: String, age: Int)
        // 读取文件创建MappedRDD,再将数据写入Person类,隐式转换为DataFrame
        val peopleDF = sc.textFile("/test/people.csv").map(_.split(",")).map(cols => Person(cols(0), cols(1).trim.toInt)).toDF()
        // DataFrame注册临时表
        peopleDF.registerTempTable("table_people")

        // SQL
        val teenagers = sqlContext.sql("select name, age from table_people where age >= 13 and age <= 19")
        teenagers.collect.foreach(println)
    }

}
  1. 方法2

    • 方法:以编程方式定义RDD Schema。
    • 场景:运行前不知道Schema。
    • 示例:
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.Row

object Test {

    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setAppName("Test")
        val sc = new SparkContext(conf)
        val sqlContext = new SQLContext(sc)

        // 将一个RDD隐式转换为一个DataFrame
        import sqlContext.implicits._
        // 使用case定义Schema(不能超过22个属性)
        case class Person(name: String, age: Int)
        // 读取文件创建MappedRDD
        val peopleFile = sc.textFile("/test/people.csv")
        // 运行时从某处获取的Schema结构
        val schemaArray = Array("name", "age")
        // 创建Schema
        val schema = StructType(schemaArray.map(fieldName => StructField(fieldName, StringType, true)))
        // 将文本转为RDD
        val rowRDD = peopleFile.map(_.split(",")).map(cols => Row(cols(0), cols(1).trim))
        // 将Schema应用于RDD
        val peopleDF = sqlContext.createDataFrame(rowRDD, schema)
        // DataFrame注册临时表
        peopleDF.registerTempTable("table_people")

        // SQL
        val teenagers = sqlContext.sql("select name, age from table_people where age >= 13 and age <= 19")
        teenagers.collect.foreach(println)
    }

}

Parquet文件数据源

  1. Parquet优点:

    • 高效、Parquet采用列式存储避免读入不需要的数据,具有极好的性能和GC;
    • 方便的压缩和解压缩,并具有极好的压缩比例;
    • 可直接读写Parquet文件,比磁盘更好的缓存效果。
  2. Spark SQL支持根据Parquet文件自描述自动推断Schema,生成DataFrame。
  3. 编程示例:
// 加载文件创建DataFrame
val peopleDF = sqlContext.read.load("/test/people.parquet")
peopleDF.printSchema
// DataFrame注册临时表
peopleDF.registerTempTable("table_people")

// SQL
val teenagers = sqlContext.sql("select name, age from table_people where age >= 13 and age <= 19")
teenagers.collect.foreach(println)
  1. 分区发现(partition discovery)

    • 与Hive分区表类似,通过分区列的值对表设置分区目录,加载Parquet数据源可自动发现和推断分区信息。
    • 示例:有一个分区列为gender和country的分区表,加载路径“/path/to/table”可自动提取分区信息
path
└── to
    └── table
        ├── gender=male
        │   ├── ...
        │   │
        │   ├── country=US
        │   │   └── data.parquet
        │   ├── country=CN
        │   │   └── data.parquet
        │   └── ...
        └── gender=female
            ├── ...
            │
            ├── country=US
            │   └── data.parquet
            ├── country=CN
            │   └── data.parquet
            └── ...
创建的DataFrame的Schema:
root
|-- name: string (nullable = true)
|-- age: long (nullable = true)
|-- gender: string (nullable = true)
|-- country: string (nullable = true)
* 分区列数据类型:支持numeric和string类型的自动推断,通过“spark.sql.sources.partitionColumnTypeInference.enabled”配置开启或关闭(默认开启),关闭后分区列全为string类型。

JSON文件数据源

  1. Spark SQL支持根据JSON文件自描述自动推断Schema,生成DataFrame。
  2. 示例:
// 加载文件创建DataFrame(JSON文件自描述Schema)
val peopleDF = sqlContext.read.format("json").load("/test/people.json")
peopleDF.printSchema
// DataFrame注册临时表
peopleDF.registerTempTable("table_people")

// SQL
val teenagers = sqlContext.sql("select name, age from table_people where age >= 13 and age <= 19")
teenagers.collect.foreach(println)

Hive数据源

  1. HiveContext

    • 操作Hive数据源须创建SQLContext的子类HiveContext对象。
    • Standalone集群:添加hive-site.xml到$SPARK_HOME/conf目录。
    • YARN集群:添加hive-site.xml到$YARN_CONF_DIR目录;添加Hive元数据库JDBC驱动jar文件到$HADOOP_HOME/lib目录。
    • 最简单方法:通过spark-submit命令参数--file和--jar参数分别指定hive-site.xml和Hive元数据库JDBC驱动jar文件。
    • 未找到hive-site.xml:当前目录下自动创建metastore_db和warehouse目录。
    • 模板:
val sqlContext = new HiveContext(sc)
  1. 使用HiveQL

    • “spark.sql.dialect”配置:SQLContext仅sql,HiveContext支持sql、hiveql(默认)。
    • 模板:
sqlContext.sql("HiveQL")
  1. 支持Hive特性

    • Hive查询语句,包括select、group by、order by、cluster by、sort by;
    • Hive运算符,包括:关系运算符(=、⇔、==、<>、<、>、>=、<=等)、算术运算符(+、-、*、/、%等)、逻辑运算符(and、&&、or、||等)、复杂类型构造函数、数据函数(sign、ln、cos等)、字符串函数(instr、length、printf);
    • 用户自定义函数(UDF);
    • 用户自定义聚合函数(UDAF);
    • 用户自定义序列化格式(SerDes);
    • 连接操作,包括join、{left | right | full} outer join、left semi join、cross join;
    • 联合操作(union);
    • 子查询:select col from (select a + b as col from t1) t2;
    • 抽样(Sampling);
    • 解释(Explain);
    • 分区表(Partitioned table);
    • 所有Hive DDL操作函数,包括create table、create table as select、alter table;
    • 大多数Hive数据类型tinyint、smallint、int、bigint、boolean、float、double、string、binary、timestamp、date、array<>、map<>、struct<>。

数据库JDBC数据源

  1. Spark SQL支持加载数据库表生成DataFrame。
  2. 模板(注意:需要相关JDBC驱动jar文件)
val jdbcOptions = Map("url" -> "", "driver" -> "", "dbtable" -> "")
sqlContext.read.format("jdbc").options(jdbcOptions).load
  1. JDBC参数
名称 说明
url The JDBC URL to connect to.
dbtable The JDBC table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.
driver The class name of the JDBC driver to use to connect to this URL.
partitionColumn, lowerBound, upperBound, numPartitions These options must all be specified if any of them is specified. They describe how to partition the table when reading in parallel from multiple workers. partitionColumn must be a numeric column from the table in question. Notice that lowerBound and upperBound are just used to decide the partition stride, not for filtering the rows in table. So all rows in the table will be partitioned and returned.
fetchSize The JDBC fetch size, which determines how many rows to fetch per round trip. This can help performance on JDBC drivers which default to low fetch size (eg. Oracle with 10 rows).

DataFrame Operation

  1. 分类:

    • DataFrameAction
名称 说明
collect: Array[Row] 以Array形式返回DataFrame的所有Row
collectAsList: List[Row] 以List形式返回DataFrame的所有Row
count(): Long 返回DataFrame的Row数目
first(): Row 返回第一个Row
head(): Row 返回第一个Row
show(): Unit 以表格形式显示DataFrame的前20个Row
take(n: Int): Array[Row] 返回DataFrame前n个Row
* 基础DataFrame函数(basic DataFrame functions)
名称 说明
cache(): DataFrame.this.type 缓存DataFrame
columns: Array[String] 以Array形式返回全部的列名
dtypes: Array[(String, String)] 以Array形式返回全部的列名和数据类型
explain: Unit 打印physical plan到控制台
isLocal: Boolean 返回collect和take是否可以本地运行
persist(newLevel: StorageLevel: DataFrame.this.type 根据StorageLevel持久化
printSchema(): Unit 以树格式打印Schema
registerTempTable(tableName: String): Unit 使用给定的名字注册DataFrame为临时表
schema: StructType 返回DataFrame的Schema
toDF(colNames: String*): DataFrame 返回一个重新指定column的DataFrame
unpersist(): DataFrame.this.type 移除持久化
* 集成语言查询(language integrated queries)
名称 说明
agg(aggExpr: (String, String), aggExpr: (String, String)): DataFrame
agg(exprs: Map[String, String]): DataFrame
agg(expr: Column, exprs: Column
): DataFrame
在整体DataFrame不分组聚合
apply(colName: String): Column 以Column形式返回列名为colName的列
as(alias: String): DataFrame
as(alias: Symbol): DataFrame
以一个别名集方式返回一个新DataFrame
col(colName: String): Column 同apply
cube(col: String, cols: String*): GroupedData 使用专门的列(以便聚合),给当前DataFrame创建一个多维数据集
distinct: DataFrame 对Row去重,返回新DataFrame
drop(col: Column): DataFrame 删除一个列,返回新DataFrame
except(other: DataFrame): DataFrame 集合差,返回新DataFrame
filter(conditionExpr: String): DataFrame
filter(condition: Column): DataFrame
使用给定的SQL表达式过滤
groupBy(col: String, cols: String*): GroupedData 使用给定的列分组DataFrame,以便能够聚合
intersect(other: DataFrame): DataFrame 交集,返回新DataFrame
limit(n: Int): DataFrame 获取前n行数据,返回新DataFrame
join(right: DataFrame):DataFrame
join(right: DataFrame, joinExprs: Column):DataFramejoin(right: DataFrame, joinExprs: Column, joinType: String):DataFrame
Join,第1个为笛卡尔积(Cross Join),第2个为Inner Join
orderBy(col: String, cols: String): DataFrame
orderBy(sortExprs: Columns
): DataFrame
使用给定表达式排序,返回新DataFrame
sample(withReplacement: Boolean, fraction: Double): DataFrame 使用随机种子,抽样部分行返回新DataFrame
select(col: String, cols: String): DataFrame
select(cols: Column
): DataFrame
selectExpr(exprs: String*): DataFrame
选择一个列集合
sort(col: String, cols: String): DataFrame
sort(sortExprs: Column
): DataFrame
同orderBy
unionAll(other: DataFrame): DataFrame 集合和,返回新DataFrame
where(conditionExpr: String): DataFrame
where(condition: Column): DataFrame
同filter
withColumn(colName, col: Column) 添加新列,返回新DataFrame
withColumnRenamed(existingName: String, newName: String) 重命名列,返回新DataFrame
* 输出操作
名称 说明
write 保存DataFrame内容到外部文件存储、Hive表:
dataFrame.write.save("路径") // 默认Parquet数据源
dataFrame.write.format("数据源名称").save("路径")
dataFrame.write.saveAsTable("表名")
dataFrame.write.insertInto("表名")
* RDD Operation

DataFrame本质是一个拥有多个分区的RDD,支持RDD Operation:coalesce、flatMap、foreach、foreachPartition、javaRDD、map、mapPartitions、repartition、toJSON、toJavaRDD等。

性能调优

缓存数据

  1. 内存列式(in-memory columnar format)缓存:Spark SQL仅扫描需要的列,并自动调整压缩比使内存使用率和GC压力最小化。
  2. 相关配置:
名称 说明
spark.sql.inMemoryColumnarStorage.compressed true
spark.sql.inMemoryColumnarStorage.batchSize 10000
  1. 缓存/移除缓存代码模板:
// 缓存方法1(lazy)
sqlContext.cacheTable("表名")
// 缓存方法2(lazy)
dataFrame.cache()
// 移除缓存(eager)
sqlContext.uncacheTable("表名")
// 注意:RDD的cache方法不是列式缓存
rdd.cache()

参数调优

名称 默认值 说明
spark.sql.autoBroadcastJoinThreshold 10485760 (10MB) 当执行Join时,对一个将要被广播到所有Worker的表配置最大字节,通过设置为-1禁止广播
spark.sql.tungsten.enabled true 配置是否开启Tungsten优化,默认开启
spark.sql.shuffle.partitions 200 当执行Join或Aggregation进行Shuffle时,配置可用分区数

案例

数据准备

  1. 数据结构

    • 职工基本信息(people)
字段 说明
name 姓名
id ID
gender 性别
age 年龄
year 入职年份
position 职位
deptid 所在部门ID
* 部门基本信息(department)
字段 说明
name 名称
deptid ID
* 职工考勤信息(attendance)
字段 说明
id 职工ID
year
month
overtime 加班
latetime 迟到
absenteeism 旷工
leaveearlytime 早退小时
* 职工工资清单(salary)
字段 说明
id 职工ID
salary 工资
  1. 建库、建表(spark-shell方式)
sqlContext.sql("create database hrs")
sqlContext.sql("use hrs")
sqlContext.sql("create external table if not exists people(name string, id int, gender string, age int, year int, position string, deptid int) row format delimited fields terminated by ',' lines terminated by '\n' location '/test/hrs/people'")
sqlContext.sql("create external table if not exists department(name string, deptid int) row format delimited fields terminated by ',' lines terminated by '\n' location '/test/hrs/department'")
sqlContext.sql("create external table if not exists attendance(id int, year int, month int, overtime int, latetime int, absenteeism int, leaveearlytime int) row format delimited fields terminated by ',' lines terminated by '\n' location '/test/hrs/attendance'")
sqlContext.sql("create external table if not exists salary(id int, salary int) row format delimited fields terminated by ',' lines terminated by '\n' location '/test/hrs/salary'")
  1. 测试数据

    • 职工基本信息(people.csv)
Michael,1,male,37,2001,developer,2
Andy,2,female,33,2003,manager,1
Justin,3,female,23,2013,recruitingspecialist,3
John,4,male,22,2014,developer,2
Herry,5,male,27,2010,developer,1
Brewster,6,male,37,2001,manager,2
Brice,7,female,30,2003,manager,3
Justin,8,male,23,2013,recruitingspecialist,3
John,9,male,22,2014,developer,1
Herry,10,female,27,2010,recruitingspecialist,3
* 部门基本信息(department.csv)
manager,1
researchhanddevelopment,2
humanresources,3
* 职工考勤信息(attendance.csv)
1,2015,12,0,2,4,0
2,2015,8,5,0,5,3
3,2015,3,16,4,1,5
4,2015,3,0,0,0,0
5,2015,3,0,3,0,0
6,2015,3,32,0,0,0
7,2015,3,0,16,3,32
8,2015,19,36,0,0,0
9,2015,5,6,30,0,2
10,2015,10,6,56,40,0
1,2014,12,0,2,4,0
2,2014,8,5,0,5,3
3,2014,3,16,4,1,5
4,2014,3,0,0,0,0
5,2014,3,0,3,0,0
6,2014,3,32,0,0,0
7,2014,3,0,16,3,32
8,2014,19,36,0,0,0
9,2014,5,6,30,0,2
10,2014,10,6,56,40,0
* 职工工资清单(salary.csv)
1,5000
2,10000
3,6000
4,7000
5,5000
6,11000
7,12000
8,5500
9,6500
10,4500
  1. 上传数据文件至HDFS
hadoop fs -mkdir /test/hrs/people
hadoop fs -mkdir /test/hrs/department
hadoop fs -mkdir /test/hrs/attendance
hadoop fs -mkdir /test/hrs/salary
hadoop fs -put people.csv /test/hrs/people
hadoop fs -put department.csv /test/hrs/department
hadoop fs -put attendance.csv /test/hrs/attendance
hadoop fs -put salary.csv /test/hrs/salary

查询部门职工数

  1. HiveQL方式
sqlContext.sql("select d.name, count(p.id) from people p join department d on p.deptid = d.deptid group by d.name").show
  1. Scala方式
val peopleDF = sqlContext.table("people")
val departmentDF = sqlContext.table("department")
peopleDF.join(departmentDF, peopleDF("deptid") === departmentDF("deptid")).groupBy(departmentDF("name")).agg(count(peopleDF("id")).as("cnt")).select(departmentDF("name"), col("cnt")).show
  1. 结果

查询各部门职工工资总数,并排序

  1. HiveQL方式
sqlContext.sql("select d.name, sum(s.salary) as salarysum from people p join department d on p.deptid = d.deptid join salary s on p.id = s.id  group by d.name order by salarysum").show
  1. Scala方式
val peopleDF = sqlContext.table("people")
val departmentDF = sqlContext.table("department")
val salaryDF = sqlContext.table("salary")
peopleDF.join(departmentDF, peopleDF("deptid") === departmentDF("deptid")).join(salaryDF, peopleDF("id") === salaryDF("id")).groupBy(departmentDF("name")).agg(sum(salaryDF("salary")).as("salarysum")).orderBy("salarysum").select(departmentDF("name"), col("salarysum")).show
  1. 结果

查询各部门职工考勤信息

  1. HiveQL方式
sqlContext.sql("select d.name, ai.year, sum(ai.attinfo) from (select p.id, p.deptid, a.year, a.month, (a.overtime - a.latetime - a.absenteeism - a.leaveearlytime) as attinfo from attendance a join people p on a.id = p.id) ai join department d on ai.deptid = d.deptid group by d.name, ai.year").show
  1. Scala方式
val attendanceDF = sqlContext.table("attendance")
val peopleDF = sqlContext.table("people")
val departmentDF = sqlContext.table("department")
val subqueryDF = attendanceDF.join(peopleDF, attendanceDF("id") === peopleDF("id")).select(peopleDF("id"), peopleDF("deptid"), attendanceDF("year"), attendanceDF("month"), (attendanceDF("overtime") - attendanceDF("latetime") - attendanceDF("absenteeism") - attendanceDF("leaveearlytime")).as("attinfo"))
subqueryDF.join(departmentDF, subqueryDF("deptid") === departmentDF("deptid")).groupBy(departmentDF("name"), subqueryDF("year")).agg(sum(subqueryDF("attinfo")).as("attinfosum")).select(departmentDF("name"), subqueryDF("year"), col("attinfosum")).show
  1. 结果

Spark SQL笔记——技术点汇总的更多相关文章

  1. Spark Streaming笔记——技术点汇总

    目录 目录 概况 原理 API DStream WordCount示例 Input DStream Transformation Operation Output Operation 缓存与持久化 C ...

  2. Spark笔记——技术点汇总

    目录 概况 手工搭建集群 引言 安装Scala 配置文件 启动与测试 应用部署 部署架构 应用程序部署 核心原理 RDD概念 RDD核心组成 RDD依赖关系 DAG图 RDD故障恢复机制 Standa ...

  3. Spark SQL笔记

    HDFS HDFS架构 1.Master(NameNode/NN) 对应 N个Slaves(DataNode/NN)2.一个文件会被拆分成多个块(Block)默认:128M例: 130M ==> ...

  4. Hive sql & Spark sql笔记

    记录了日常使用时遇到的特殊的查询语句.不断更新- 1. SQL查出内容输出到文件 hive -e "...Hive SQL..." > /tmp/out sparkhive ...

  5. Spark SQL 笔记

    Spark SQL 简介 SparkSQL 的前身是 Shark, SparkSQL 产生的根本原因是其完全脱离了 Hive 的限制.(Shark 底层依赖于 Hive 的解析器, 查询优化器) Sp ...

  6. Hadoop笔记——技术点汇总

    目录 · 概况 · Hadoop · 云计算 · 大数据 · 数据挖掘 · 手工搭建集群 · 引言 · 配置机器名 · 调整时间 · 创建用户 · 安装JDK · 配置文件 · 启动与测试 · Clo ...

  7. Java并发编程笔记——技术点汇总

    目录 · 线程安全 · 线程安全的实现方法 · 互斥同步 · 非阻塞同步 · 无同步 · volatile关键字 · 线程间通信 · Object.wait()方法 · Object.notify() ...

  8. Storm笔记——技术点汇总

    目录 概况 手工搭建集群 引言 安装Python 配置文件 启动与测试 应用部署 参数配置 Storm命令 原理 Storm架构 Storm组件 Stream Grouping 守护进程容错性(Dae ...

  9. Hive笔记——技术点汇总

    目录 · 概况 · 手工安装 · 引言 · 创建HDFS目录 · 创建元数据库 · 配置文件 · 测试 · 原理 · 架构 · 与关系型数据库对比 · API · WordCount · 命令 · 数 ...

随机推荐

  1. nodejs实战:使用原生nodeJs模块实现静态文件及REST请求解析及响应(基于nodejs6.2.0版本,不使用express等webMVC框架 )

    一.准备工作 1.安装nodejs 首先你需要安装nodeJs 那么nodejs官网:http://nodejs.cn/,下载相应版本,一步一步安装. 二.使用nodejs开发服务器后台应用 1.创建 ...

  2. 【错误】undefined reference to `boost::....的解决

    很多新手引用Boost库编程,在ubuntu下编译时候有时候会出现如下错误: test04.cpp:(.text+0x2c): undefined reference to `boost::progr ...

  3. 几个常用的linux命令(操作服务器时会用到)

    目录 tmux 背景 安装 使用 启动一个tmux session 暂时离开当前session 回到之前的session 重命名session 创建window 创建pane ps scp 参考 tm ...

  4. DW3 消息推送

    1.新建项目 参见:http://www.cnblogs.com/yysbolg/p/yys_Blogs_java.html 2.添加jar包: commons-fileupload-1.2.jar ...

  5. java 生产者 与 消费者的案例

    主要理解了两个问题 1.线程数据同步的问题 2.线程交替运行的方式 package ThreadDemo; /** * 生产者与消费者的案例(一,同步的问题,值的问题 二,交替执行的问题) * @au ...

  6. zepto的使用方法

    有些不了解zepto的同学在刚接触的时候肯定有很多疑惑,这个东西怎么用啊,去哪里下载啊,什么时候该用什么时候不该用啊,其实我以前也是这样的.jquery使用多了那么就让我们一起来了解下zepto把. ...

  7. 基于spring多数据源动态调用及其事务处理

    需求: 有些时候,我们需要连接多个数据库,但是,在方法调用前并不知道到底是调用哪个.即同时保持多个数据库的连接,在方法中根据传入的参数来确定. 下图的单数据源的调用和多数据源动态调用的流程,可以看出在 ...

  8. Solr6.6 Tomcat8部署

    原文:https://github.com/x113773/testall/issues/6 准备工作:[solr-6.6.0](http://www.apache.org/dyn/closer.lu ...

  9. video+ audio

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  10. CSS雪碧图自动生成软件

    下载地址 http://www.99css.com/1524/ 包含详细的下载地址.下载步骤以及使用教程 亮点:自动合成雪碧图+自动生成雪碧图background-position代码 简单过程 下载 ...