数据倾斜是进行大数据计算时最经常遇到的问题之一。当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题。数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成。

  在hive中产生数据倾斜的原因和解决方法:

  1)group by,我使用Hive对数据做一些类型统计的时候遇到过某种类型的数据量特别多,而其他类型数据的数据量特别少。当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这里还没计算完成,其他节点的一直等待这个节点的任务执行完成,所以会看到一直map 100%  reduce 99%的情况。

  解决方法:set hive.map.aggr=true

       set hive.groupby.skewindata=true

  原理:hive.map.aggr=true 这个配置项代表是否在map端进行聚合

     hive.groupby.skwindata=true 当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

  2)map和reduce优化。

    1.当出现小文件过多,需要合并小文件。可以通过set hive.merge.mapfiles=true来解决。

      2.单个文件大小稍稍大于配置的block块的大写,此时需要适当增加map的个数。解决方法:set mapred.map.tasks个数

       3.文件大小适中,但map端计算量非常大,如select id,count(*),sum(case when...),sum(case when...)...需要增加map个数。解决方法:set mapred.map.tasks个数,set mapred.reduce.tasks个数

  3)当HiveQL中包含count(distinct)时

如果数据量非常大,执行如select a,count(distinct b) from t group by a;类型的SQL时,会出现数据倾斜的问题。

解决方法:使用sum...group by代替。如select a,sum(1) from (select a, b from t group by a,b) group by a;

  4)当遇到一个大表和一个小表进行join操作时。

    解决方法:使用mapjoin 将小表加载到内存中。

    如:select /*+ MAPJOIN(a) */

      a.c1, b.c1 ,b.c2

     from a join b

     where a.c1 = b.c1;

  5)遇到需要进行join的但是关联字段有数据为空,如表一的id需要和表二的id进行关联

     解决方法1:id为空的不参与关联

    比如:select * from log a

      join users b

      on a.id is not null and a.id = b.id

       union all

       select * from log a

      where a.id is null;

   解决方法2:给空值分配随机的key值

      如:select * from log a

        left outer join users b

        on

        case when a.user_id is null

        then concat(‘hive’,rand() )

        else a.user_id end = b.user_id;

以上是在工作和学习中遇到的数据倾斜的情况,也希望各位能够提供更多的建议,后续遇到会更新补充。

Hive数据倾斜解决方法总结的更多相关文章

  1. hive单节点数据倾斜解决方法

    一.现象 map/reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百 ...

  2. Hive数据倾斜解决办法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  3. hive数据倾斜原因以及解决办法

    何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成, ...

  4. 实战 | Hive 数据倾斜问题定位排查及解决

    Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措 ...

  5. SQLServerException:将截断字符串或二进制数据的解决方法

    SQLServerException:将截断字符串或二进制数据的解决方法: 最近使用JPA进行保存对象到数据库中怎么也添加不进去,始终报错 主要原因就是你增加的数据字段长度超过数据库中字段所定义长度, ...

  6. resultMap中的collection集合出现只能读取一条数据的解决方法

    查询数据时只能获得collection集合中的的一条数据,相关情况如下: 结果集resultMap: <resultMap id="ManagerRolesAcls" typ ...

  7. .NET MVC Json()处理大数据异常解决方法

    [1-部分原文]: .NET MVC Json()处理大数据异常解决方法 整个项目采用微软的ASP.NET MVC3进行开发,前端显示采用EasyUI框架,图表的显示用的是Highcharts,主要进 ...

  8. Hive 数据倾斜原因及解决方法(转)

    在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平 ...

  9. Hive数据倾斜的原因及主要解决方法

    数据倾斜产生的原因 数据倾斜的原因很大部分是join倾斜和聚合倾斜两大类 Hive倾斜之group by聚合倾斜 原因: 分组的维度过少,每个维度的值过多,导致处理某值的reduce耗时很久: 对一些 ...

随机推荐

  1. mybatis逆向工程之生成文件解释

    一.mapper接口中的方法解析 mapper接口中的函数及方法 方法 功能说明 int countByExample(UserExample example) thorws SQLException ...

  2. 1.Servlet介绍 和 HTTP协议简述

    1. Servlet是什么? sun公司制订的一种用来扩展web服务器功能的组件规范. (1)扩展web服务器功能 注: 早期的web服务器只能处理静态资源的请求,即需要事先将 html文件准备好,并 ...

  3. AIO5打印样式函数说明

    函数名称 描述 _RM_Column 返回当前栏目数. _RM_Line 返回数据行数(从分组的起始位置开始) _RM_LineThough 返回数据行数(从报表的起始位置开始) _RM_Page 返 ...

  4. 阿里云VPS搭建Hexo博客

    最近买了一个阿里云服务器,准备写自己的网站,和将自己的作品放在上面:开始的时候,感觉就一个服务器应该很简单,但是从申请域名到备案,再到服务器搭建,没想到一波三折:闲话不多说,只是记录我在搭建时,最简单 ...

  5. 【OCR技术系列之一】字符识别技术总览

    最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解.所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解. 什么是OCR? OC ...

  6. JavaScript学习笔记(十三)——生成器(generator)

    在学习廖雪峰前辈的JavaScript教程中,遇到了一些需要注意的点,因此作为学习笔记列出来,提醒自己注意! 如果大家有需要,欢迎访问前辈的博客https://www.liaoxuefeng.com/ ...

  7. debounce去弹跳

    通过返回闭包,来共用timer定时器,通过定时器的清除和设置来实现每次触发后重新计时. /** * * @param fn {Function} 实际要执行的函数 * @param delay {Nu ...

  8. Swift Runtime ?

    你肯定也想过 在OC中相信每一个iOS开发都知道Runtime, 现在Swift也更新到4.0版本了,要是你也学习过Swift的话你可能也会想过这样一个问题,OC大家都是到是有动态性的,你能通过run ...

  9. 记一下flex弹性布局

    flex弹性布局也越来越广泛的在我们代码中出现了,更加方便我们的布局.自己用了查,查了用,有些还是记不住,俗话说好脑子不如烂笔头,原来都是写在本子上的,很不幸的一次次的想翻的时候总是找不到,还是写博客 ...

  10. 15. 使用Apache Curator管理ZooKeeper

    Apache ZooKeeper是为了帮助解决复杂问题的软件工具,它可以帮助用户从复杂的实现中解救出来. 然而,ZooKeeper只暴露了原语,这取决于用户如何使用这些原语来解决应用程序中的协调问题. ...