Hive数据倾斜解决方法总结
数据倾斜是进行大数据计算时最经常遇到的问题之一。当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题。数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成。
在hive中产生数据倾斜的原因和解决方法:
1)group by,我使用Hive对数据做一些类型统计的时候遇到过某种类型的数据量特别多,而其他类型数据的数据量特别少。当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这里还没计算完成,其他节点的一直等待这个节点的任务执行完成,所以会看到一直map 100% reduce 99%的情况。
解决方法:set hive.map.aggr=true
set hive.groupby.skewindata=true
原理:hive.map.aggr=true 这个配置项代表是否在map端进行聚合
hive.groupby.skwindata=true 当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
2)map和reduce优化。
1.当出现小文件过多,需要合并小文件。可以通过set hive.merge.mapfiles=true来解决。
2.单个文件大小稍稍大于配置的block块的大写,此时需要适当增加map的个数。解决方法:set mapred.map.tasks个数
3.文件大小适中,但map端计算量非常大,如select id,count(*),sum(case when...),sum(case when...)...需要增加map个数。解决方法:set mapred.map.tasks个数,set mapred.reduce.tasks个数
3)当HiveQL中包含count(distinct)时
如果数据量非常大,执行如select a,count(distinct b) from t group by a;类型的SQL时,会出现数据倾斜的问题。
解决方法:使用sum...group by代替。如select a,sum(1) from (select a, b from t group by a,b) group by a;
4)当遇到一个大表和一个小表进行join操作时。
解决方法:使用mapjoin 将小表加载到内存中。
如:select /*+ MAPJOIN(a) */
a.c1, b.c1 ,b.c2
from a join b
where a.c1 = b.c1;
5)遇到需要进行join的但是关联字段有数据为空,如表一的id需要和表二的id进行关联
解决方法1:id为空的不参与关联
比如:select * from log a
join users b
on a.id is not null and a.id = b.id
union all
select * from log a
where a.id is null;
解决方法2:给空值分配随机的key值
如:select * from log a
left outer join users b
on
case when a.user_id is null
then concat(‘hive’,rand() )
else a.user_id end = b.user_id;
以上是在工作和学习中遇到的数据倾斜的情况,也希望各位能够提供更多的建议,后续遇到会更新补充。
Hive数据倾斜解决方法总结的更多相关文章
- hive单节点数据倾斜解决方法
一.现象 map/reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百 ...
- Hive数据倾斜解决办法总结
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...
- hive数据倾斜原因以及解决办法
何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成, ...
- 实战 | Hive 数据倾斜问题定位排查及解决
Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措 ...
- SQLServerException:将截断字符串或二进制数据的解决方法
SQLServerException:将截断字符串或二进制数据的解决方法: 最近使用JPA进行保存对象到数据库中怎么也添加不进去,始终报错 主要原因就是你增加的数据字段长度超过数据库中字段所定义长度, ...
- resultMap中的collection集合出现只能读取一条数据的解决方法
查询数据时只能获得collection集合中的的一条数据,相关情况如下: 结果集resultMap: <resultMap id="ManagerRolesAcls" typ ...
- .NET MVC Json()处理大数据异常解决方法
[1-部分原文]: .NET MVC Json()处理大数据异常解决方法 整个项目采用微软的ASP.NET MVC3进行开发,前端显示采用EasyUI框架,图表的显示用的是Highcharts,主要进 ...
- Hive 数据倾斜原因及解决方法(转)
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平 ...
- Hive数据倾斜的原因及主要解决方法
数据倾斜产生的原因 数据倾斜的原因很大部分是join倾斜和聚合倾斜两大类 Hive倾斜之group by聚合倾斜 原因: 分组的维度过少,每个维度的值过多,导致处理某值的reduce耗时很久: 对一些 ...
随机推荐
- lua API 小记2
1. 创建lua虚拟机 lua_State *lua_newstate (lua_Alloc f, void *ud) 创建一个新的独立的lua虚拟机. 参数指定了内存分配策略及其参数, 注意, 让用 ...
- Mac下面的SecureCRT以及破解方案详解
今天安装SecureCRT时遇到了一些问题,解决后便想分享给大家.本人还是在校大学生,如果有说得不好的地方请多多指教. 第一步:下载:https://macabc.com/detail.htm?app ...
- CCF认证考试——折点计数
描述:简单题 #include<iostream> using namespace std; int main() { ], n, count = ; cin >> n; ; ...
- BST 解析 (二)height and deletion
前面一章介绍了BST的结构和一些简单的基本功能,例如:insert,findMin,nextLarger等等.这一节主要讲解一些BST的delete node操作还有BST的height的分析以及一些 ...
- AFNetworking提示3840 Unescaped control character around character XXX
处理办法:找到AFNetworking包中AFURLResponseSerialization.m文件在第250行修改代码如下: if (data.length > 0 && ! ...
- 【二十三】php之预定义超全局变量
php提供了九种预定义超全局变量: $_GET.$_POST.$_REQUEST.$_SERVER.$_ENV.$_FILE. $_COOKIE.$_SESSION. $GLOBALS 1.$_GET ...
- QWT与QT Designer
QWT是一套非常不错的开发库,它能结合QT开发,做出非常好的曲线,刻度,表盘等效果来. qwt的下载以及动态链接库的编译等这里就不做介绍了.在源码目录下可以找到designer目录,其中有插件的源码 ...
- HTML5经常使用知识
今日做项目.涉及到native和H5页面的交互 1.document.readyState document.readyState:推断文档是否载入完毕. firefox不支持. 这个属性是仅仅读的, ...
- MongoDB学习笔记<一>
今天学习了shell的主要的操作,例如以下: 1.创建一个数据库foobar use foobar 2.给指定的数据库加入集合,并加入记录 db.person.insert({"name&q ...
- CoordinatorLayout与滚动的处理
本博文专门解说和CoordinatorLayout相关的知识点,这也是Design Support Library中最重要与最难的部分. 概览 CoordinatorLayout实现了多种Materi ...