Python 项目实践二(生成数据)第一篇
上面那个小游戏教程写不下去了,以后再写吧,今天学点新东西,了解的越多,发现python越强大啊!
数据可视化指的是通过可视化表示来探索数据,它与数据挖掘紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联。数据集可以是用一行代码就能表示的小型数字列表,也可以是数以吉字节的数据。
用。最流行的工具之一是matplotlib,它是一个数学绘图库,我们将使用它来制作简单的图表,如折线图和散点图。然后,我们将基于随机漫步概念生成一个更有趣的数据集——根据一系列随机决策生成的图表。我们还将使用Pygal包,它专注于生成适合在数字设备上显示的图表。通过使用Pygal,可在用户与图表交互时突出元素以及调整其大小,还可轻松地调整整个图表的尺寸,使其适合在微型智能手表或巨型显示器上显示。我们将使用Pygal以各种方式探索掷骰子的结果。
一 折线图
1 绘制简单的折线图
下面来使用matplotlib绘制一个简单的折线图,再对其进行定制,以实现信息更丰富的数据可视化。我们将使用平方数序列1、4、9、16和25来绘制这个图表。
import matplotlib.pyplot as plt squares = [1, 4, 9, 16, 25] plt.plot(squares) plt.show()
运行结果如下图:
plt.show()打开matplotlib查看器,并显示绘制的图形,
2 修改标签文字和线条粗细
import matplotlib.pyplot as plt squares=[1,4,9,16,25] plt.plot(squares,linewidth=5) #设置图标标题,并给坐标轴加上标签 plt.title("Square Numbers",fontsize=24) plt.xlabel("value",fontsize=14) plt.ylabel("Square of value",fontsize=14) #设置刻度标记的大小 plt.tick_params(axis="both",labelsize=14) plt.show()
代码注释的很详细了,这里再强调几点:
(1)参数linewidth决定了plot()绘制的线条的粗细。函数title()给图表指定标题
(2)函数xlabel()和ylabel()让你能够为每条轴设置标题
(3)在上述代码中,出现了多次的参数fontsize指定了图表中文字的大小。
(4)函数tick_params()设置刻度的样式
运行结果如下图:
3 校正图像
图形更容易阅读后,我们发现没有正确地绘制数据:折线图的终点指出4.0的平方为25!下面修复这个问题。
当你向plot()提供一系列数字时,它假设第一个数据点对应的x坐标值为0,但我们的第一个点对应的x值为1。为改变这种默认行为,我们可以给plot()同时提供输入值和输出值:
import matplotlib.pyplot as plt input_values=[1,2,3,4,5] squares=[1,4,9,16,25] plt.plot(input_values,squares,linewidth=5) #设置图标标题,并给坐标轴加上标签 plt.title("Square Numbers",fontsize=24) plt.xlabel("value",fontsize=14) plt.ylabel("Square of value",fontsize=14) #设置刻度标记的大小 plt.tick_params(axis="both",labelsize=14) plt.show()
结果如下:
二 散点图
1 使用scatter()绘制散点图并设置其样式
要绘制单个点,可使用函数scatter(),并向它传递一对x和y坐标,它将在指定位置绘制一个点:
import matplotlib.pyplot as plt plt.scatter(2,4) plt.show()
下面来设置输出的样式,使其更有趣:添加标题,给轴加上标签,并确保所有文本都大到能够看清:
import matplotlib.pyplot as plt plt.scatter(2,4,s=400) # 设置图表标题并给坐标轴加上标签 plt.title("Square Numbers", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', which='major', labelsize=14) plt.show()
2 使用scatter()绘制一系列的点
要绘制一系列的点,可向scatter()传递两个分别包含x值和y值的列表,如下所示:
import matplotlib.pyplot as plt x_values=[1,2,3,4,5] y_values=[1,4,9,16,25] plt.scatter(x_values,y_values,s=400) # 设置图表标题并给坐标轴加上标签 plt.title("Square Numbers", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', which='major', labelsize=14) plt.show()
列表x_values包含要计算其平方值的数字,而列表y_values包含前述每个数字的平方值。将这些列表传递给scatter()时,matplotlib依次从每个列表中读取一个值来绘制一个点。要绘制的点的坐标分别为 (1, 1)、(2, 4)、(3, 9)、(4, 16)和(5, 25),最终的结果如图:
三 自动计算数据
手工计算列表要包含的值可能效率低下,需要绘制的点很多时尤其如此。可以不必手工计算包含点坐标的列表,而让Python循环来替我们完成这种计算。下面是绘制1000个点的代码:
import matplotlib.pyplot as plt x_values = list(range(1,1001)) y_values = [x**2 for x in x_values] plt.scatter(x_values,y_values,s=40) # 设置图表标题并给坐标轴加上标签 plt.title("Square Numbers", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', which='major', labelsize=14) #设置每个坐标的取值范围 plt.axis([0,1100,0,1100000]) plt.show()
由于这个数据集较大,我们将点设置得较小,并使用函数axis()指定了每个坐标轴的取值范围。函数axis()要求提供四个值:x和y坐标轴的最小值和最大值,结果如下图:
四 删除数据点的轮廓
matplotlib允许你给散点图中的各个点指定颜色。默认为蓝色点和黑色轮廓,在散点图包含的数据点不多时效果很好。但绘制很多点时,黑色轮廓可能会粘连在一起。要删除数据点的轮廓可在调用scatter()时传递实参edgecolor='none':
plt.scatter(x_values, y_values, edgecolor='none', s=40)将相应调用修改为上述代码后,如果再运行scatter_squares.py,在图表中看到的将是蓝色实心点。
五 自定义颜色
要修改数据点的颜色,可向scatter()传递参数c,并将其设置为要使用的颜色的名称,如下
plt.scatter(x_values, y_values, c='red', edgecolor='none', s=40)
你还可以使用RGB颜色模式自定义颜色。要指定自定义颜色,可传递参数c,并将其设置为一个元组,其中包含三个0~1之间的小数值,它们分别表示红色、绿色和蓝色分量。例如,下面的代码行创建一个由淡蓝色点组成的散点图:
plt.scatter(x_values, y_values, c=(0, 0, 0.8), edgecolor='none', s=40)
值越接近0,指定的颜色越深,值越接近1,指定的颜色越浅。
六 使用颜色映射
颜色映射(colormap)是一系列颜色,它们从起始颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律,例如,你可能用较浅的颜色来显示较小的值,并使用较深的颜色来显示较大的值。
模块pyplot内置了一组颜色映射。要使用这些颜色映射,你需要告诉pyplot该如何设置数据集中每个点的颜色。下面演示了如何根据每个点的y值来设置其颜色:
plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues,edgecolor="none",s=40)
我们将参数c设置成了一个y值列表,并使用参数cmap告诉pyplot使用哪个颜色映射。这些代码将y值较小的点显示为浅蓝色,并将y值较大的点显示为深蓝色,生成的图形如图。
七 自动保存图片
要让程序自动将图表保存到文件中,可将对plt.show()的调用替换为对plt.savefig()的调用:
plt.savefig('squares_plot.png', bbox_inches='tight')
第一个实参指定要以什么样的文件名保存图表,这个文件将存储到scatter_squares.py所在的目录中;第二个实参指定将图表多余的空白区域裁剪掉。如果要保留图表周围多余的空白区域,可省略这个实参。
Python 项目实践二(生成数据)第一篇的更多相关文章
- Python 项目实践二(生成数据)第二篇之随机漫步
接着上节继续学习,在本节中,我们将使用Python来生成随机漫步数据,再使用matplotlib以引人瞩目的方式将这些数据呈现出来.随机漫步是这样行走得到的路径:每次行走都完全是随机的,没有明确的方向 ...
- Python 项目实践二(生成数据)第二篇
接着上节继续学习,在本节中,我们将使用Python来生成随机漫步数据,再使用matplotlib以引人瞩目的方式将这些数据呈现出来.随机漫步是这样行走得到的路径:每次行走都完全是随机的,没有明确的方向 ...
- Python 项目实践二(下载数据)第三篇
接着上节继续学习,在本章中,你将从网上下载数据,并对这些数据进行可视化.网上的数据多得难以置信,且大多未经过仔细检查.如果能够对这些数据进行分析,你就能发现别人没有发现的规律和关联.我们将访问并可视化 ...
- Python 项目实践二(下载数据)第四篇
接着上节继续学习,在本节中,你将下载JSON格式的人口数据,并使用json模块来处理它们.Pygal提供了一个适合初学者使用的地图创建工具,你将使用它来对人口数据进行可视化,以探索全球人口的分布情况. ...
- Spring Boot 揭秘与实战(二) 数据缓存篇 - Guava Cache
文章目录 1. Guava Cache 集成 2. 个性化配置 3. 源代码 本文,讲解 Spring Boot 如何集成 Guava Cache,实现缓存. 在阅读「Spring Boot 揭秘与实 ...
- Spring Boot 揭秘与实战(二) 数据缓存篇 - 快速入门
文章目录 1. 声明式缓存 2. Spring Boot默认集成CacheManager 3. 默认的 ConcurrenMapCacheManager 4. 实战演练5. 扩展阅读 4.1. Mav ...
- Spring Boot 揭秘与实战(二) 数据缓存篇 - Redis Cache
文章目录 1. Redis Cache 集成 2. 源代码 本文,讲解 Spring Boot 如何集成 Redis Cache,实现缓存. 在阅读「Spring Boot 揭秘与实战(二) 数据缓存 ...
- Spring Boot 揭秘与实战(二) 数据缓存篇 - EhCache
文章目录 1. EhCache 集成 2. 源代码 本文,讲解 Spring Boot 如何集成 EhCache,实现缓存. 在阅读「Spring Boot 揭秘与实战(二) 数据缓存篇 - 快速入门 ...
- Spring Boot 揭秘与实战(二) 数据存储篇 - 声明式事务管理
文章目录 1. 声明式事务 2. Spring Boot默认集成事务 3. 实战演练4. 源代码 3.1. 实体对象 3.2. DAO 相关 3.3. Service 相关 3.4. 测试,测试 本文 ...
随机推荐
- [转]oracle系统表v$session、v$sql字段说明
在本视图中,每一个连接到数据库实例中的 session都拥有一条记录.包括用户 session及后台进程如 DBWR, LGWR, arcchiver等等. V$SESSION中的常用列 V$SESS ...
- Quartus FFT IP核简介
为了突出重点,仅对I/O数据流为steaming的情况作简要说明,以便快速上手,有关FFT ip核模型及每种设置详细介绍请参考官方手册FFT MegaCore Function User Guide. ...
- Django 入门案例开发(下)——创建项目应用及模型类
前面两章是在已经开发好的项目上用来描述环境和业务,这一章创建一个全新的项目来用作开发,你可以跟着我的步骤进行开发,如果有不理解的地方可以给我留言. 今天的任务是创建好项目和用户(users)应用及让它 ...
- Hi3518EV200平台ADC多通道采样
Hi3518EV200平台ADC多通道采样流程 Hi3518EV200 ADC 本文针对Hi3518EV200平台处理器,通过ADC单次采样方式,实现对多通道(1~4通道)ADC进行采样控制.本文仅仅 ...
- mysql主从同步+mycat读写分离+.NET程序连接mycat代理
背景 最近新项目需要用到mysql数据库,并且由于数据量大的原因,故打算采用1主1从(主数据库负责增.删.改操作:从数据库负责查操作)的数据库架构,在实现主从之后还要实现读写分离的代理,在网上搜寻了很 ...
- 手写particles
var canvas = document.getElementById('canvas'); var ctx = canvas.getContext('2d'); var Grewer = { in ...
- Chapter 7:Linking
概述: 在linux上,从c源码到可执行文件主要需要经历translator(compiler.assembler)生成object file,再经由linker连接成executable objec ...
- Mac安装Elasticsearch时提示:No Java runtime present, requesting install.
没有安装java的童鞋可以先去安装一下,地址:https://www.java.com/zh_CN/ 安装之后还是提示如下错误: ➜ elasticsearch-2.4.3 bin/elasticse ...
- Docker技术浅谈:私有化部署的优势以及在顶象内部的应用实践
顶象全景式业务安全风控体系基于新一代风控体系构建,并采用Docker技术进行私有云和公有云部署.本文主要和大家分享下Docker容器技术和顶象风控系统私有化部署的优势以及Docker容器技术在顶象内部 ...
- LayoutInflater 三种获得方式
LayoutInflater 作用是从外部加载一个xml布局文件. 获得 LayoutInflater 实例的三种方式: 1.LayoutInflater inflater = getLayoutIn ...