Problem statement:

There is an m by n grid with a ball. Given the start coordinate (i,j) of the ball, you can move the ball to adjacent cell or cross the grid boundary in four directions (up, down, left, right). However, you can at most move N times. Find out the number of paths to move the ball out of grid boundary. The answer may be very large, return it after mod 109 + 7.

Example 1:

Input:m = 2, n = 2, N = 2, i = 0, j = 0
Output: 6
Explanation:

Example 2:

Input:m = 1, n = 3, N = 3, i = 0, j = 1
Output: 12
Explanation:

Note:

  1. Once you move the ball out of boundary, you cannot move it back.
  2. The length and height of the grid is in range [1,50].
  3. N is in range [0,50].

Analysis:

This question is the last one of leetcode weekly contest 31. Initially, it is tagged with medium, and then adjusted to hard today.

They mentioned a position in a two dimension board and at most N step to move and count the numbers to get out of boundary. Obviously, DP.

My first solution:

Start from (i, j), initialize all the element in the row i and col and j compared their value with N.

Do four direction dynamic programming, however, it ignored one fact that the value of one cell can come from all four directions except boundary.

The answer is wrong.

Solution:

This solution is quite simple, we have m * n board and N step to move, it is a 3 dimension DP.

The initialization status: dp[0][0 ... m -1][0 ... n - 1] is 0. means the step is 0, all value is 0.

Current value only comes from four directions of last move or 1 if it is boundary.

DP formula is:

dp[step][row][col] = dp[step - ][row - ][col] + dp[step - ][row + ][col] + dp[step - ][row][col - ] + dp[step - ][row][col + ]

we calculate the value of this three dimension matrix and return the value of dp[N][i][j].

The time complexity is O(N * m * n), space complexity is O((N + 1) * m * n)

class Solution {
public:
int findPaths(int m, int n, int N, int i, int j) {
unsigned int dp[N + ][m][n] = {};
for(int step = ; step <= N; step++){
for(int row = ; row < m; row++){
for(int col = ; col < n; col++){
// the value come from four directoion
// if one value comes from boundary: 1
// dp[step - 1][row - 1][col]
// + dp[step - 1][row + 1][col]
// + dp[step - 1][row][col - 1]
// + dp[step - 1][row][col + 1]
dp[step][row][col] = ((row == ? : dp[step - ][row - ][col])
+ (row == m - ? : dp[step - ][row + ][col])
+ (col == ? : dp[step - ][row][col - ])
+ (col == n - ? : dp[step - ][row][col + ])) % ;
}
}
}
return dp[N][i][j];
}
};

576. Out of Boundary Paths的更多相关文章

  1. leetcode 576. Out of Boundary Paths 、688. Knight Probability in Chessboard

    576. Out of Boundary Paths 给你一个棋盘,并放一个东西在一个起始位置,上.下.左.右移动,移动n次,一共有多少种可能移出这个棋盘 https://www.cnblogs.co ...

  2. 【leetcode】576. Out of Boundary Paths

    题目如下: There is an m by n grid with a ball. Given the start coordinate (i,j) of the ball, you can mov ...

  3. 【LeetCode】576. Out of Boundary Paths 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 状态搜索 记忆化搜索 相似题目 参考资料 ...

  4. leetcode 576. Out of Boundary Paths

    leetcode 576 题意大概就是在一个m*n的网格中,在坐标为[i,j]的网格上放一个物体,在规定时间N(t<=N)中,有多少种方法把物体移动出去.物体只能上下左右移动,一次移动一格,移动 ...

  5. 第十一周 Leetcode 576. Out of Boundary Paths (HARD) 计数dp

    Leetcode 576 给定一个二维平面, 一个球在初始位置(i,j)每次可以转移到上下左右的一格. 问在N次转移内,有多少种路径可以转移出边境. dp[i][j][k]为 在点(i,j) 已经走了 ...

  6. [LeetCode] Out of Boundary Paths 出界的路径

    There is an m by n grid with a ball. Given the start coordinate (i,j) of the ball, you can move the ...

  7. [Swift]LeetCode576. 出界的路径数 | Out of Boundary Paths

    There is an m by n grid with a ball. Given the start coordinate (i,j) of the ball, you can move the ...

  8. leetcode bugfree note

    463. Island Perimeterhttps://leetcode.com/problems/island-perimeter/就是逐一遍历所有的cell,用分离的cell总的的边数减去重叠的 ...

  9. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

随机推荐

  1. rpm包相关操作

    1.查找已安装的rpm:rpm -qa|grep ewp2.卸载已安装的rpm: 先切换到虚拟机共享路径,执行卸载命令: rpm -e 已安装rpm包名称3.安装新rpm包:rpm -ivh(更新的话 ...

  2. Frame框架

    框架 frameset    框架集    如果使用框架集,当前页面不能有body    cols="300,*" :左右拆分,左边宽300,右边宽剩余    rows=" ...

  3. win32/mfc/qt 异常处理与总结

    际异常一: libcpmtd.lib(xmbtowc.obj) : error LNK2001: unresolved external symbol __CrtDbgReport Debug/B机. ...

  4. Unity - 通过降低精度减少动画文件的大小

    Animation是Unity中的动画文件,主要内容由一个个关键帧数据构成.通过将Unity的资源序列化方式调整为Text,就可以以文本方式查看动画文件.通过菜单项Edit -> Project ...

  5. WPF之路四:窗体自适应

    下面我来举个例子说明如何用Grid或DockPanel来实现自适应窗体. 让我们新建一个WPF工程,完成后我们打开对应的XAML文件,可以看到VS已经自动添加了<Grid></Gri ...

  6. Android中的java层的线程暂停和恢复实现

    /**  * 基础线程对象.  *  * @author jevan  * @version (1.0 at 2013-6-17)  * @version (1.1 at 2013-7-2) 增加on ...

  7. JavaWeb总结(八)—EL表达式

    一.EL表达式简介 EL全名Expression Language.主要有以下作用. 1.获取数据 EL表达式主要用于替换JSP页面的脚本表达式,以及各种类型的Web域中检索Java对象.获取数据.( ...

  8. 1147: 零起点学算法54——Fibonacc

    1147: 零起点学算法54--Fibonacc Time Limit: 1 Sec  Memory Limit: 64 MB   64bit IO Format: %lldSubmitted: 20 ...

  9. 1129: 零起点学算法36——3n+1问题

    1129: 零起点学算法36--3n+1问题 Time Limit: 1 Sec  Memory Limit: 64 MB   64bit IO Format: %lldSubmitted: 4541 ...

  10. C#7的新语法

    阅读目录 out变量 元组(Tuples) 模式匹配(Pattern matching) 本地引用和返回(Ref locals and returns) 本地函数(Local functions) 表 ...