Description

Bob有一棵n个点的有根树,其中1号点是根节点。Bob在每个点上涂了颜色,并且每个点上的颜色不同。定义一条路径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色。Bob可能会进行这几种操作:
1 x:把点x到根节点的路径上所有的点染上一种没有用过的新颜色。
2 x y:求x到y的路径的权值。
3 x y:在以x为根的子树中选择一个点,使得这个点到根节点的路径权值最大,求最大权值。
Bob一共会进行m次操作

Input

第一行两个数n,m。
接下来n-1行,每行两个数a,b,表示a与b之间有一条边。
接下来m行,表示操作,格式见题目描述
1<=n,m<=100000

Output

每当出现2,3操作,输出一行。
如果是2操作,输出一个数表示路径的权值
如果是3操作,输出一个数表示权值的最大值

Sample Input

5 6
1 2
2 3
3 4
3 5
2 4 5
3 3
1 4
2 4 5
1 5
2 4 5

Sample Output

3
4
2
2

正解:$link-cut tree$+树链剖分+线段树。

这道题很巧妙啊。。利用$LCT$的神奇性质完美地解决了询问$1$的棘手操作。

首先我们注意到,询问$1$其实就是$LCT$中的$access$操作。我们可以直接维护每个点到根节点的权值,然后利用$access$操作来处理这个问题。

我们在$access$操作的时候,直接将当前点原来的实儿子所在的子树权值$+1$,当前待接上的实儿子所在子树权值$-1$,就能完美地处理这个操作了。注意,这里指的实儿子一定是在原树中深度最浅的点。我比较偷懒,就直接暴力找$splay$中深度最小的点。具体解释的话,画个图就能理解了,看下代码应该能弄懂吧。。

对于询问$2$,我们可以发现,路径上的权值就是$val[x]+val[y]-2*val[lca(x,y)]+1$。这个式子是很好画图证明的。

首先,$lca$的两个儿子颜色是不可能相同的,所以我们分两种情况讨论一下,一种是$lca$和其中一个儿子颜色相同,一种是$lca$和两个儿子颜色都不同。这样我们就能很容易地得出上述结论。

对于询问$3$,我们直接区间查询,询问子树中的权值最大值就行了。

以上操作,维护权值都是用线段树,求$lca$写树链剖分比较方便。然后我们就能$AC$此题了,虽然复杂度还是很玄学。。

第一次$bzoj \ rank1$。。

 //It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1<<30)
#define N (100010)
#define ls (x<<1)
#define rs (x<<1|1)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ int nt,to; }g[*N]; int head[N],n,m,num; struct tree_cut{ int top[N],fa[N],son[N],sz[N],dep[N],pos[N],tid[N],ed[N],cnt; il void dfs1(RG int x,RG int p){
fa[x]=p,dep[x]=dep[p]+,sz[x]=; RG int v;
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p) continue;
dfs1(v,x),sz[x]+=sz[v];
if (sz[son[x]]<=sz[v]) son[x]=v;
}
return;
} il void dfs2(RG int x,RG int p,RG int anc){
top[x]=anc,tid[x]=++cnt,pos[cnt]=x;
if (son[x]) dfs2(son[x],x,anc); RG int v;
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p || v==son[x]) continue;
dfs2(v,x,v);
}
ed[x]=cnt; return;
} il int lca(RG int u,RG int v){
while (top[u]!=top[v]){
if (dep[top[u]]<dep[top[v]]) swap(u,v);
u=fa[top[u]];
}
return dep[u]<dep[v] ? u : v;
} }tree; struct segment_tree{ int mx[*N],lazy[*N]; il void pushdown(RG int x){
mx[ls]+=lazy[x],mx[rs]+=lazy[x];
lazy[ls]+=lazy[x],lazy[rs]+=lazy[x];
lazy[x]=; return;
} il void build(RG int x,RG int l,RG int r){
if (l==r){ mx[x]=tree.dep[tree.pos[l]]; return; }
RG int mid=(l+r)>>;
build(ls,l,mid),build(rs,mid+,r);
mx[x]=max(mx[ls],mx[rs]); return;
} il void update(RG int x,RG int l,RG int r,RG int xl,RG int xr,RG int v){
if (xl<=l && r<=xr){ mx[x]+=v,lazy[x]+=v; return; }
if (lazy[x]) pushdown(x); RG int mid=(l+r)>>;
if (xr<=mid) update(ls,l,mid,xl,xr,v);
else if (xl>mid) update(rs,mid+,r,xl,xr,v);
else update(ls,l,mid,xl,mid,v),update(rs,mid+,r,mid+,xr,v);
mx[x]=max(mx[ls],mx[rs]); return;
} il int querymax(RG int x,RG int l,RG int r,RG int xl,RG int xr){
if (xl<=l && r<=xr) return mx[x];
if (lazy[x]) pushdown(x); RG int mid=(l+r)>>;
if (xr<=mid) return querymax(ls,l,mid,xl,xr);
else if (xl>mid) return querymax(rs,mid+,r,xl,xr);
else return max(querymax(ls,l,mid,xl,mid),querymax(rs,mid+,r,mid+,xr));
} il int ask(RG int x){ return querymax(,,n,tree.tid[x],tree.tid[x]); } }seg; struct link_cut_tree{ int ch[N][],fa[N]; il int isroot(RG int x){
return ch[fa[x]][]!=x && ch[fa[x]][]!=x;
} il void rotate(RG int x){
RG int y=fa[x],z=fa[y],k=ch[y][]==x;
if (!isroot(y)) ch[z][ch[z][]==y]=x;
fa[x]=z,ch[y][k^]=ch[x][k],fa[ch[x][k]]=y;
ch[x][k]=y,fa[y]=x; return;
} il void splay(RG int x){
while (!isroot(x)){
RG int y=fa[x],z=fa[y];
if (!isroot(y)){
if ((ch[y][]==x)^(ch[z][]==y)) rotate(x);
else rotate(y);
}
rotate(x);
}
return;
} il void access(RG int x){
RG int t=;
while (x){
splay(x);
if (ch[x][]){
RG int y=ch[x][]; while (ch[y][]) y=ch[y][];
seg.update(,,n,tree.tid[y],tree.ed[y],);
}
if (t){
RG int y=t; while (ch[y][]) y=ch[y][];
seg.update(,,n,tree.tid[y],tree.ed[y],-);
}
ch[x][]=t,t=x,x=fa[x];
}
return;
} }lct; il void insert(RG int from,RG int to){
g[++num]=(edge){head[from],to},head[from]=num; return;
} il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void work(){
n=gi(),m=gi();
for (RG int i=,u,v;i<n;++i) u=gi(),v=gi(),insert(u,v),insert(v,u);
tree.dfs1(,),tree.dfs2(,,),seg.build(,,n);
for (RG int i=;i<=n;++i) lct.fa[i]=tree.fa[i];
for (RG int i=,type,x,y;i<=m;++i){
type=gi(); if (type==) x=gi(),lct.access(x);
if (type==){
x=gi(),y=gi(); RG int Lca=tree.lca(x,y);
printf("%d\n",seg.ask(x)+seg.ask(y)-*seg.ask(Lca)+);
}
if (type==) x=gi(),printf("%d\n",seg.querymax(,,n,tree.tid[x],tree.ed[x]));
}
return;
} int main(){
File("paint");
work();
return ;
}

bzoj4817 [Sdoi2017]树点涂色的更多相关文章

  1. [BZOJ4817][SDOI2017]树点涂色(LCT+DFS序线段树)

    4817: [Sdoi2017]树点涂色 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 692  Solved: 408[Submit][Status ...

  2. [Bzoj4817] [Sdoi2017]树点涂色 (LCT神题)

    4817: [Sdoi2017]树点涂色 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 629  Solved: 371[Submit][Status ...

  3. BZOJ4817[Sdoi2017]树点涂色——LCT+线段树

    题目描述 Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色.Bob可能会进 ...

  4. BZOJ4817 [Sdoi2017]树点涂色 【LCT + 线段树】

    题目 Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色.Bob可能会进行这 ...

  5. bzoj千题计划275:bzoj4817: [Sdoi2017]树点涂色

    http://www.lydsy.com/JudgeOnline/problem.php?id=4817 lct+线段树+dfs序 操作1:access 操作2:u到根的-v到根的-lca到根的*2+ ...

  6. BZOJ4817: [Sdoi2017]树点涂色(LCT)

    Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. ...

  7. [BZOJ4817][SDOI2017]树点涂色:Link-Cut Tree+线段树

    分析 与[BZOJ3779]重组病毒唯一的区别是多了一个链上求实链段数的操作. 因为每条实链的颜色必然不相同且一条实链上不会有两个深度相同的点(好像算法的正确性和第二个条件没什么关系,算了算了),画图 ...

  8. 【BZOJ4817】[Sdoi2017]树点涂色 LCT+线段树

    [BZOJ4817][Sdoi2017]树点涂色 Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路径的权值是:这条路 ...

  9. [Sdoi2017]树点涂色 [lct 线段树]

    [Sdoi2017]树点涂色 题意:一棵有根树,支持x到根染成新颜色,求x到y颜色数,求x子树里点到根颜色数最大值 考场发现这个信息是可减的,但是没想到lct 特意设计成lct的形式! 如何求颜色数? ...

随机推荐

  1. 九度oj题目1207:质因数的个数

    题目描述: 求正整数N(N>1)的质因数的个数. 相同的质因数需要重复计算.如120=2*2*2*3*5,共有5个质因数. 输入: 可能有多组测试数据,每组测试数据的输入是一个正整数N,(1&l ...

  2. Js里面的数组去重方法

    去掉数组里面重复的有很多种,我这里就说一种比较简单的吧. var arr=[23,33,44,33,44,66,44,55,44,4,44,33,23]; for(var i=0;i<arr.l ...

  3. iOS最好用的弹出框

    重构项目时发现有的时候需要弹出提示,比如登录成功,数据请求失败,还有选择相机或者相册来上传头像等等. 今天就自己写了一个弹出框,采用的是系统的UIAlertController,只不过自己有定义了一些 ...

  4. ”在活动中穿梭”已经重做为“Intent的使用”

    更新地址:http://www.cnblogs.com/tangwanzun/p/5702276.html

  5. 阿里云Linux启动tomcat并能外网访问

    问题描述: 先描述一下我的心路历程吧,新买了阿里云服务器,由于需求不是很大,只是为了备案,所以买了个最低配的,而且是Windows server2012的.那现在需要做的是在这个乞丐版的server上 ...

  6. 提问!同一ajax请求获取的图片路劲,在谷歌浏览器能正确展示图片,在火狐浏览器则显示路径undefined

    今天的工作学习之路遇见一个奇葩的问题,作为初级攻城狮的小生实在不知如何解决,都已经壁咚度娘一整天了,都未能解决问题,实属无奈,一开始认为是浏览器兼容的问题,但左看右看,也不是,也尝试过是不是页面加载与 ...

  7. java学习笔记 --- 条件,循环语句

    一.三元运算符 A:格式    比较表达式?表达式1:表达式2;   B:执行流程:    首先计算比较表达式的值,看是true还是false.    如果是true,表达式1就是结果.    如果是 ...

  8. centos7 安装kubernetes1.4

    192.168.251.9 master192.168.251.231 node 建议可以搭建etcd集群来做数据库存储,并搭建kube-dns,然后把k8s的日志落地到/var/log/kubern ...

  9. 如何写一手漂亮的 Vue

    前几日听到一句生猛与激励并存,可怕与尴尬同在,最无奈也无解的话:"90后,你的中年危机已经杀到".这令我很受触动.显然,这有些夸张了,但就目前这日复一日的庸碌下去,眨眼的功夫,那情 ...

  10. Confluence安装&破解&汉化

    p.MsoNormal,li.MsoNormal,div.MsoNormal { margin: 0cm; margin-bottom: .0001pt; text-align: justify; f ...