bzoj4817 [Sdoi2017]树点涂色
Description
Input
Output
Sample Input
1 2
2 3
3 4
3 5
2 4 5
3 3
1 4
2 4 5
1 5
2 4 5
Sample Output
4
2
2
正解:$link-cut tree$+树链剖分+线段树。
这道题很巧妙啊。。利用$LCT$的神奇性质完美地解决了询问$1$的棘手操作。
首先我们注意到,询问$1$其实就是$LCT$中的$access$操作。我们可以直接维护每个点到根节点的权值,然后利用$access$操作来处理这个问题。
我们在$access$操作的时候,直接将当前点原来的实儿子所在的子树权值$+1$,当前待接上的实儿子所在子树权值$-1$,就能完美地处理这个操作了。注意,这里指的实儿子一定是在原树中深度最浅的点。我比较偷懒,就直接暴力找$splay$中深度最小的点。具体解释的话,画个图就能理解了,看下代码应该能弄懂吧。。
对于询问$2$,我们可以发现,路径上的权值就是$val[x]+val[y]-2*val[lca(x,y)]+1$。这个式子是很好画图证明的。
首先,$lca$的两个儿子颜色是不可能相同的,所以我们分两种情况讨论一下,一种是$lca$和其中一个儿子颜色相同,一种是$lca$和两个儿子颜色都不同。这样我们就能很容易地得出上述结论。
对于询问$3$,我们直接区间查询,询问子树中的权值最大值就行了。
以上操作,维护权值都是用线段树,求$lca$写树链剖分比较方便。然后我们就能$AC$此题了,虽然复杂度还是很玄学。。
第一次$bzoj \ rank1$。。
//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1<<30)
#define N (100010)
#define ls (x<<1)
#define rs (x<<1|1)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ int nt,to; }g[*N]; int head[N],n,m,num; struct tree_cut{ int top[N],fa[N],son[N],sz[N],dep[N],pos[N],tid[N],ed[N],cnt; il void dfs1(RG int x,RG int p){
fa[x]=p,dep[x]=dep[p]+,sz[x]=; RG int v;
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p) continue;
dfs1(v,x),sz[x]+=sz[v];
if (sz[son[x]]<=sz[v]) son[x]=v;
}
return;
} il void dfs2(RG int x,RG int p,RG int anc){
top[x]=anc,tid[x]=++cnt,pos[cnt]=x;
if (son[x]) dfs2(son[x],x,anc); RG int v;
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p || v==son[x]) continue;
dfs2(v,x,v);
}
ed[x]=cnt; return;
} il int lca(RG int u,RG int v){
while (top[u]!=top[v]){
if (dep[top[u]]<dep[top[v]]) swap(u,v);
u=fa[top[u]];
}
return dep[u]<dep[v] ? u : v;
} }tree; struct segment_tree{ int mx[*N],lazy[*N]; il void pushdown(RG int x){
mx[ls]+=lazy[x],mx[rs]+=lazy[x];
lazy[ls]+=lazy[x],lazy[rs]+=lazy[x];
lazy[x]=; return;
} il void build(RG int x,RG int l,RG int r){
if (l==r){ mx[x]=tree.dep[tree.pos[l]]; return; }
RG int mid=(l+r)>>;
build(ls,l,mid),build(rs,mid+,r);
mx[x]=max(mx[ls],mx[rs]); return;
} il void update(RG int x,RG int l,RG int r,RG int xl,RG int xr,RG int v){
if (xl<=l && r<=xr){ mx[x]+=v,lazy[x]+=v; return; }
if (lazy[x]) pushdown(x); RG int mid=(l+r)>>;
if (xr<=mid) update(ls,l,mid,xl,xr,v);
else if (xl>mid) update(rs,mid+,r,xl,xr,v);
else update(ls,l,mid,xl,mid,v),update(rs,mid+,r,mid+,xr,v);
mx[x]=max(mx[ls],mx[rs]); return;
} il int querymax(RG int x,RG int l,RG int r,RG int xl,RG int xr){
if (xl<=l && r<=xr) return mx[x];
if (lazy[x]) pushdown(x); RG int mid=(l+r)>>;
if (xr<=mid) return querymax(ls,l,mid,xl,xr);
else if (xl>mid) return querymax(rs,mid+,r,xl,xr);
else return max(querymax(ls,l,mid,xl,mid),querymax(rs,mid+,r,mid+,xr));
} il int ask(RG int x){ return querymax(,,n,tree.tid[x],tree.tid[x]); } }seg; struct link_cut_tree{ int ch[N][],fa[N]; il int isroot(RG int x){
return ch[fa[x]][]!=x && ch[fa[x]][]!=x;
} il void rotate(RG int x){
RG int y=fa[x],z=fa[y],k=ch[y][]==x;
if (!isroot(y)) ch[z][ch[z][]==y]=x;
fa[x]=z,ch[y][k^]=ch[x][k],fa[ch[x][k]]=y;
ch[x][k]=y,fa[y]=x; return;
} il void splay(RG int x){
while (!isroot(x)){
RG int y=fa[x],z=fa[y];
if (!isroot(y)){
if ((ch[y][]==x)^(ch[z][]==y)) rotate(x);
else rotate(y);
}
rotate(x);
}
return;
} il void access(RG int x){
RG int t=;
while (x){
splay(x);
if (ch[x][]){
RG int y=ch[x][]; while (ch[y][]) y=ch[y][];
seg.update(,,n,tree.tid[y],tree.ed[y],);
}
if (t){
RG int y=t; while (ch[y][]) y=ch[y][];
seg.update(,,n,tree.tid[y],tree.ed[y],-);
}
ch[x][]=t,t=x,x=fa[x];
}
return;
} }lct; il void insert(RG int from,RG int to){
g[++num]=(edge){head[from],to},head[from]=num; return;
} il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void work(){
n=gi(),m=gi();
for (RG int i=,u,v;i<n;++i) u=gi(),v=gi(),insert(u,v),insert(v,u);
tree.dfs1(,),tree.dfs2(,,),seg.build(,,n);
for (RG int i=;i<=n;++i) lct.fa[i]=tree.fa[i];
for (RG int i=,type,x,y;i<=m;++i){
type=gi(); if (type==) x=gi(),lct.access(x);
if (type==){
x=gi(),y=gi(); RG int Lca=tree.lca(x,y);
printf("%d\n",seg.ask(x)+seg.ask(y)-*seg.ask(Lca)+);
}
if (type==) x=gi(),printf("%d\n",seg.querymax(,,n,tree.tid[x],tree.ed[x]));
}
return;
} int main(){
File("paint");
work();
return ;
}
bzoj4817 [Sdoi2017]树点涂色的更多相关文章
- [BZOJ4817][SDOI2017]树点涂色(LCT+DFS序线段树)
4817: [Sdoi2017]树点涂色 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 692 Solved: 408[Submit][Status ...
- [Bzoj4817] [Sdoi2017]树点涂色 (LCT神题)
4817: [Sdoi2017]树点涂色 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 629 Solved: 371[Submit][Status ...
- BZOJ4817[Sdoi2017]树点涂色——LCT+线段树
题目描述 Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色.Bob可能会进 ...
- BZOJ4817 [Sdoi2017]树点涂色 【LCT + 线段树】
题目 Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色.Bob可能会进行这 ...
- bzoj千题计划275:bzoj4817: [Sdoi2017]树点涂色
http://www.lydsy.com/JudgeOnline/problem.php?id=4817 lct+线段树+dfs序 操作1:access 操作2:u到根的-v到根的-lca到根的*2+ ...
- BZOJ4817: [Sdoi2017]树点涂色(LCT)
Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. ...
- [BZOJ4817][SDOI2017]树点涂色:Link-Cut Tree+线段树
分析 与[BZOJ3779]重组病毒唯一的区别是多了一个链上求实链段数的操作. 因为每条实链的颜色必然不相同且一条实链上不会有两个深度相同的点(好像算法的正确性和第二个条件没什么关系,算了算了),画图 ...
- 【BZOJ4817】[Sdoi2017]树点涂色 LCT+线段树
[BZOJ4817][Sdoi2017]树点涂色 Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路径的权值是:这条路 ...
- [Sdoi2017]树点涂色 [lct 线段树]
[Sdoi2017]树点涂色 题意:一棵有根树,支持x到根染成新颜色,求x到y颜色数,求x子树里点到根颜色数最大值 考场发现这个信息是可减的,但是没想到lct 特意设计成lct的形式! 如何求颜色数? ...
随机推荐
- JAVA基础知识(2)--关键字final的使用
/***Final关键字的使用*@author lihaiming*Email:912547587@qq.com*关键字Final可以修饰属性,方法,类*修饰属性的时候,final修饰的变量是一个常量 ...
- cssLoading效果
http://files.cnblogs.com/files/xdoudou/loaders.css-master.zip
- 初见 ThreadLocal 类
这个类能够将一个对象和一个线程绑定起来. 之所以写这个类是因为 DBUtils 工具类,在 JavaEE 经典三层结构中对于事务的操作,不方便放在 DAO 层,因为具有侵入性,只适合放在 Servic ...
- 在js中,window != top 的作用
在网站的首页加上下面的javascript,就可以把自己的窗口变成是最前端的窗口.可以避免别人把你的网站放在他的iframe中,显示的就是他的网站了,误导浏览者. <script type=&q ...
- 知问前端——html+jq+jq_ui+ajax
**************************************************************************************************** ...
- jquery-scrollstop
$(window) .on("scrollstart", function() { // Paint the world yellow when scrolling starts. ...
- pyqt样式表语法笔记(中)
pyqt样式表语法笔记(中) pyqt QSS python 样式表 一.弹窗 在日常的各种桌面软件的使用中,我们都会碰到弹窗.例如注册,登录的时候,会有相应的信息弹窗,这里就以信息收集弹窗为例进行弹 ...
- unity插件开发——一个例子:简单的svn集成
在unity开发过程中,通常我们习惯性地在Windows操作系统下使用svn进行版本管理,而每次提交更新,都需要回到文件夹下的这种操作让人无法忍受.是不是可以集成svn到unity中呢?查了一圈uni ...
- Tcl与Design Compiler (十一)——其他的时序约束选项(二)
本文如果有错,欢迎留言更正:此外,转载请标明出处 http://www.cnblogs.com/IClearner/ ,作者:IC_learner 前面介绍的设计都不算很复杂,都是使用时钟的默认行为 ...
- 手机自动化测试:appium源码分析之bootstrap十
手机自动化测试:appium源码分析之bootstrap十 poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣, ...