An overnight dance in discotheque
time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output

The crowdedness of the discotheque would never stop our friends from having fun, but a bit more spaciousness won't hurt, will it?

The discotheque can be seen as an infinite xy-plane, in which there are a total of n dancers. Once someone starts moving around, they will move only inside their own movement range, which is a circular area Ci described by a center (xi, yi) and a radius ri. No two ranges' borders have more than one common point, that is for every pair (i, j) (1 ≤ i < j ≤ n) either ranges Ci and Cj are disjoint, or one of them is a subset of the other. Note that it's possible that two ranges' borders share a single common point, but no two dancers have exactly the same ranges.

Tsukihi, being one of them, defines the spaciousness to be the area covered by an odd number of movement ranges of dancers who are moving. An example is shown below, with shaded regions representing the spaciousness if everyone moves at the same time.

But no one keeps moving for the whole night after all, so the whole night's time is divided into two halves — before midnight and after midnight. Every dancer moves around in one half, while sitting down with friends in the other. The spaciousness of two halves are calculated separately and their sum should, of course, be as large as possible. The following figure shows an optimal solution to the example above.

By different plans of who dances in the first half and who does in the other, different sums of spaciousness over two halves are achieved. You are to find the largest achievable value of this sum.

Input

The first line of input contains a positive integer n (1 ≤ n ≤ 1 000) — the number of dancers.

The following n lines each describes a dancer: the i-th line among them contains three space-separated integers xiyi and ri( - 106 ≤ xi, yi ≤ 106, 1 ≤ ri ≤ 106), describing a circular movement range centered at (xi, yi) with radius ri.

Output

Output one decimal number — the largest achievable sum of spaciousness over two halves of the night.

The output is considered correct if it has a relative or absolute error of at most 10 - 9. Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if .

Examples
input
5
2 1 6
0 4 1
2 -1 3
1 -2 1
4 -1 1
output
138.23007676
input
8
0 0 1
0 0 2
0 0 3
0 0 4
0 0 5
0 0 6
0 0 7
0 0 8
output
289.02652413
Note

The first sample corresponds to the illustrations in the legend.

题解:

因为圆与圆之间只有两种关系,即相离和相包含,所以就可以根据是否相包含建立一棵树。

因为只有奇数部分才算宽敞度,所以自然就可以想到用0和1来表示在奇数层和偶数层。

又因为要将圆分成两个部分,综上所述,状态即为f[x][0/1][0/1]表示以x为根节点的树,x放在左边奇数层或偶数层和x放在右边奇数层或偶数层的最大值。

由于父子节点的层数相差一,所以从下到上动归的时候需要做一个异或运算。

代码如下:

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#define pai (3.14159265358979323846)//像我这种辣鸡只会手打二十位的π
using namespace std;
int n,m;
int x[],y[],r[];
int father[];
long long f[][][];
struct node
{
int next,to;
}edge[];
int head[],size=;
void putin(int from,int to)
{
size++;
edge[size].to=to;
edge[size].next=head[from];
head[from]=size;
}
bool judge(int a,int b)
{
if((long long)(x[a]-x[b])*(x[a]-x[b])+(long long)(y[a]-y[b])*(y[a]-y[b])<=(long long)(r[a]-r[b])*(r[a]-r[b]))return ;
else return ;
}
void dfs(int x,int fa)
{
int i,j,k;
long long g[][]={};
for(i=head[x];i!=-;i=edge[i].next)
{
int y=edge[i].to;
if(y!=fa)
{
dfs(y,x);
for(j=;j<=;j++)
{
for(k=;k<=;k++)
{
g[j][k]+=f[y][j][k];
}
}
}
}
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
f[x][i][j]=max(g[i^][j]+(long long)r[x]*r[x]*(i==?():(-)),g[i][j^]+(long long)r[x]*r[x]*(j==?():(-)));
}
}
}
int main()
{
int i,j;
scanf("%d",&n);
memset(head,-,sizeof(head));
for(i=;i<=n;i++)
{
scanf("%d%d%d",&x[i],&y[i],&r[i]);
}
memset(father,-,sizeof(father));
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if(i!=j&&r[i]<=r[j]&&judge(i,j))
{
if(father[i]==-||r[father[i]]>r[j])father[i]=j;
}
}
putin(father[i],i);
}
long long ans=;
for(i=;i<=n;i++)
{
if(father[i]==-)
{
dfs(i,-);
ans+=f[i][][];
}
}
printf("%.8lf",ans*pai);
return ;
}

An overnight dance in discotheque的更多相关文章

  1. Codeforces Round #418 (Div. 2) D. An overnight dance in discotheque

    Codeforces Round #418 (Div. 2) D. An overnight dance in discotheque 题意: 给\(n(n <= 1000)\)个圆,圆与圆之间 ...

  2. CodeForces 814D An overnight dance in discotheque(贪心+dfs)

    The crowdedness of the discotheque would never stop our friends from having fun, but a bit more spac ...

  3. codeforces 814D An overnight dance in discotheque

    题目链接 正解:贪心. 首先我们可以计算出每个圆被多少个圆覆盖. 很显然,最外面的圆是肯定要加上的. 然后第二层的圆也是要加上的.那么第三层就不可能被加上了.同理,第四层的圆又一定会被加上. 然后我们 ...

  4. CF#418 Div2 D. An overnight dance in discotheque

    一道树形dp裸体,自惭形秽没有想到 首先由于两两圆不能相交(可以相切)就决定了一个圆和外面一个圆的包含关系 又可以发现这样的树中,奇数深度的圆+S,偶数深度的圆-S 就可以用树形dp 我又写挫了= = ...

  5. An overnight dance in discotheque CodeForces - 814D (几何)

    大意: 给定n个不相交的圆, 求将n个圆划分成两部分, 使得阴影部分面积最大. 贪心, 考虑每个连通块, 最外层大圆分成一部分, 剩余分成一部分一定最优. #include <iostream& ...

  6. codeforces 814 D. An overnight dance in discotheque (贪心+bfs)

    题目链接:http://codeforces.com/contest/814/problem/D 题意:给出奇数个舞者,每个舞者都有中心坐标和行动半径,而且这些点组成的园要么相互包含要么没有交集求,讲 ...

  7. codeforces round 418 div2 补题 CF 814 A-E

    A An abandoned sentiment from past 水题 #include<bits/stdc++.h> using namespace std; int a[300], ...

  8. BZOJ 1305: [CQOI2009]dance跳舞 二分+最大流

    1305: [CQOI2009]dance跳舞 Description 一次舞会有n个男孩和n个女孩.每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞.每个男孩都不会和同一个女孩跳两首(或更多)舞曲 ...

  9. Malek Dance Club(递推)

    Malek Dance Club time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

随机推荐

  1. HDU4712 Hamming Distance (随机化)

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4712 题意:给1e5个数字,输出这些数中,最小的海明码距离. 思路:距离的范围是0到20.而且每个数的 ...

  2. Java IO详解(五)------包装流

    File 类的介绍:http://www.cnblogs.com/ysocean/p/6851878.html Java IO 流的分类介绍:http://www.cnblogs.com/ysocea ...

  3. 【方法】Html5实现文件异步上传

    1 简介 开发文件上传功能从来不是一件愉快的事,异步上传更是如此,使用过iframe和Flash的上传方案,也都感觉十分的别扭.本文简要简绍利用Html5的FormData实现文件的异步上传,还可以实 ...

  4. javaWeb学习总结(7)- 使用Session防止表单重复提交

    在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用户可能会以为是自己没有提交表单,就会再点击提交按钮重复提交表单,我们在开发中必须防止表单重复提交. 一.表单重复提 ...

  5. 侯捷STL学习(一)

    开始跟着<STL源码剖析>的作者侯捷真人视频,学习STL,了解STL背后的真实故事! 视频链接:侯捷STL 还有很大其他视频需要的留言 第一节:STL版本和重要资源 STL和标准库的区别 ...

  6. 每天一道Java题[10]

    题目 阐述创建线程最常用的两种方法及其对比. 解答 方法一:继承Thread类实现 步骤: 创建Thread类的子类,如MyThread. 重写Thread类的run()方法. 实例化MyThread ...

  7. WebApi2 文件图片上传下载

    Asp.Net Framework webapi2 文件上传与下载 前端界面采用Ajax的方式执行 一.项目结构 1.App_Start配置了跨域访问,以免请求时候因跨域问题不能提交.具体的跨域配置方 ...

  8. More 3D Graphics (rgl) for Classification with Local Logistic Regression and Kernel Density Estimates (from The Elements of Statistical Learning)(转)

    This post builds on a previous post, but can be read and understood independently. As part of my cou ...

  9. 【webpack】webpack-dev-server生猛上手——让我们来搭一个webpack的微服务器吧!

      [前言]:因为最近在搞百度地图API的时候到了webpack的externals,才发现我之前都只是用webpack做一些搭建完项目后的"收尾工作"--即打包,而没有把它纳入到 ...

  10. 《物联网框架ServerSuperIO教程》-19.设备驱动和OPC Client支持mysql、oracle、sqlite、sqlserver的持久化。v3.6.4版本发布

    19.设备驱动和OPC Client支持mysql.oracle.sqlite.sqlserver的持久化 19.1     概述 ServerSuperIO支持设备驱动和OPC Client采集的数 ...