机器学习是设计算法A,在假设集合H里,根据给定数据集D,选出与实际模式f最为相近的假设g(g可能与f相同,也可能不同)。

那什么情况下学习是可行的?即保证g和f是相似的。

1.数据集内的表现g约等于f;

2.g在数据集外的表现约等于g在数据集内的表现。

结合1,2可保证,由算法在给定数据集上学习到的g(即数据集内的表现g约等于f)在数据集外的表现也约等于f。即g与f相似。

如何保证2?

数据集内表现相同的多个假设在数据集外的部分数据上表现相差极大,即学习效果极差。

霍夫丁不等式,

有一个装有绿色小球和橘色小球的罐子(假设球数无限),从中进行N次有放回的取球实验,在这N次实验中取出橘色小球的频率为v,

只要N足够大,就可以用v来估计mu即罐子中橘色小球的实际概率。

与学习相联系,

当h选定时,只要D里样本数N足够大且样本点独立同分布,

就能保证h在整个输入空间里的表现(异常点的概率)与数据集内的表现(D里异常点的频率)在一定的概率范围内近似相等。

注意,Eout(h)实际是面向整个输入空间的,即数据集D内+数据集D外。

如何保证1?

A根据D在H中选出使得Ein(h)小的h。

注意,2的保证是在给定h的情况下,即h的选择只有1个。

但是,1的保证需要在H中进行选择,如果H的size>1,即h有很多个,可能有限,可能无限,那么2的保证是否受到影响?

坏数据:对于一个h,使得h在该数据内外表现差异很大的数据为坏数据。

可以理解为霍夫丁不等式的左式中概率衡量的事件:Ein(h)和Eout(h)的差异大于容忍度epsilon,

即对于一个h,存在坏数据的概率小于等于霍夫丁的右式。对于一个输入空间X,能够产生的用于训练的数据D有很多个,若对于一个h,给定的数据刚好就是坏数据的概率是小于等于霍夫丁的右式的。

若有M个h,给定的数据是其中某个h的坏数据的概率是小于等于数据为h1的坏数据+数据为h2的坏数据+数据为h3的坏数据+。。。+数据为hM的坏数据。

本质是求并集(小于等于的原因是有可能存在交集)。

这里的M实际是|H|。

只要M是有限值,只要N足够大,不等式的右式就能足够小。

所以,只要假设集大小有限、N足够大------保证Ein和Eout的差异在容忍度内,

A根据D在H中挑选出g------保证Ein小,

就能说学习是PAC可能的。

但是,

如果输入空间X是无限的,那理论上对应的H的数量也是无限的,

那|H|无限时,怎么办?

04 Feasibility of Learning的更多相关文章

  1. 机器学习基石笔记:04 Feasibility of Learning

    原文地址:https://www.jianshu.com/p/f2f4d509060e 机器学习是设计算法\(A\),在假设集合\(H\)里,根据给定数据集\(D\),选出与实际模式\(f\)最为相近 ...

  2. 机器学习基石 4 Feasibility of Learning

    机器学习基石 4 Feasibility of Learning Learning is Impossible? 机器学习:通过现有的训练集 \(D\) 学习,得到预测函数 \(h(x)\) 使得它接 ...

  3. 理解机器为什么可以学习(一)---Feasibility of learning

    主要讲解内容来自机器学习基石课程.主要就是基于Hoeffding不等式来从理论上描述使用训练误差Ein代替期望误差Eout的合理性. PAC : probably approximately corr ...

  4. 林轩田机器学习基石笔记4—Feasibility of Learning

    上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Lear ...

  5. 【Feasibility of Learning】林轩田机器学习基石

    这一节的核心内容在于如何由hoeffding不等式 关联到机器学习的可行性. 这个PAC很形象又准确,描述了“当前的可能性大概是正确的”,即某个概率的上届. hoeffding在机器学习上的关联就是: ...

  6. (转)深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0

      深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 发表于2016年07月15号由52nlp 接上文<深度学习主机攒机小记>,这台GTX10 ...

  7. Displaying 1-16 of 86 results for: deep learning

    Displaying 1-16 of 86 results for: deep learning Deep Learning By Adam Gibson, Josh Patterson Publis ...

  8. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  9. Ubuntu16.04 + cuda8.0 + GTX1080安装教程

    1. 安装Ubuntu16.04 不考虑双系统,直接安装 Ubuntu16.04,从 ubuntu官方 下载64位版本: ubuntu-16.04-desktop-amd64.iso . 在MAC下制 ...

随机推荐

  1. 每天一个Linux命令(13)--less命令

    less 工具也是对文件或其它输出进行分页显示的工具,应该说是Linux正统馋看文件内容的工具,功能极其强大.less 的用法比起  more 更加有弹性.  在 more 的时候,我们没有办法向前面 ...

  2. 【《Effective C#》提炼总结】提高Unity中C#代码质量的21条准则

    作者:Williammao, 腾讯移动客户端开发工程师 商业转载请联系腾讯WeTest获得授权,非商业转载请注明出处. 原文链接:http://wetest.qq.com/lab/view/290.h ...

  3. Thread类常用方法

    Thread类构造方法: 1.Thread(): 2.Thread(String name): 3.Thread(Runable r): 4.Thread(Runable r, String name ...

  4. angularjs+ionic注册页面表单验证(手机号、确认密码、60s后重发验证码)

    在已建立tabs和路由的注册页面html: 功能: 进行了手机号.密码格式验证,两次密码输入是否相同的判断,都正确且复选框勾选后才可点击注册,进入tabs.mypage页面. 未进行验证码真正发送.获 ...

  5. 【经验】JavaScript

    1.function closeWin(){             window.open('','_self');       window.opener=null;  //    window. ...

  6. Django之admin

    django amdin是django提供的一个后台管理页面,改管理页面提供完善的html和css,使得你在通过Model创建完数据库表之后, 就可以对数据进行增删改查,而使用django admin ...

  7. Django之Session

    Django  -- Seeion介绍 问:       Django的session是什么? 答:       Django 完全支持匿名 Session的. Session 框架允许每一个用户保存 ...

  8. 通过udev创建ASM共享磁盘(RAC)

    OS:RedHat EL6.0 Oracle:   Oracle 11gR2 在Oracle 11gR2,构建RAC时可以通过ASM创建asm disk,但是需要安装asmlib相关软件:对于RedH ...

  9. 基于nodejs模拟浏览器post请求爬取json数据

    今天想爬取某网站的后台传来的数据,中间遇到了很多阻碍,花了2个小时才请求到数据,所以我在此总结了一些经验. 首先,放上我所爬取的请求地址http://api.chuchujie.com/api/?v= ...

  10. wemall开源商城免费商城系统部分代码(内含代码地址)

    wemall开源商城免费商城系统部分代码,下面分享部分代码,供学习者学习: 开源版把install文件夹下的install.lock删除之后可进行自动安装 后台访问地址:http:// www.xxx ...