Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 13266   Accepted: 5123   Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network,
each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 

Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one
because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 

You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about
possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot
be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding
cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

这题我就不吐槽了。

例子都是错的。。我没看讨论区。。

一直不知道。

浪费我那么多时间调试。

我去。

各种吐血。

。我也逗比。。

例子明显的出现环。。

正确的例子应该是:

1

3

1 2

1 3

3 4

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath> using namespace std; const int maxn1 = 15050;//边数的最大值
const int maxn2 = 1050;//顶点个数的最大值
int f[maxn2];//f[i]为顶点i在集合对树中的根节点
int s[maxn1];//记录选择的边的序号
int n, m;//集线器的个数。 边的个数
int cnt;//选择的边的数目
int ans;//记录最大的长度 struct Edge
{
int u;
int v;
int len;
};
Edge edge[maxn1];//边的数组 bool cmp(Edge a, Edge b)//按长度从小到大的排序
{
return a.len<b.len;
} void init()//初始化
{
for(int i=0; i<=n; i++)
f[i] = i;
} int find(int x)//并查集的find函数
{
return f[x] == x? x:f[x]=find( f[x] );
} void kruskal()
{
int x, y;
cnt = 0;
for(int i=1; i<=m; i++)
{
x = find( edge[i].u );
y = find( edge[i].v );
if( x==y ) continue;
f[y] = x;
ans = edge[i].len;
cnt++;
s[cnt] = i;
if( cnt>=n-1 ) break;
}
} void output()//输出函数
{
printf("%d\n", ans);
printf("%d\n", cnt);
for(int i=1; i<=cnt; i++)
printf("%d %d\n", edge[ s[i] ].u, edge[ s[i] ].v);
} int main()
{
while(scanf("%d%d", &n, &m)!=EOF)
{
init();
for(int i=1; i<=m; i++)
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].len);
sort( edge+1, edge+m+1, cmp );
kruskal();
output();
} return 0;
}

POJ 1861:Network(最小生成树&amp;&amp;kruskal)的更多相关文章

  1. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  2. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  3. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  4. POJ 1861 Network (模版kruskal算法)

    Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: Accepted: Special Judge Descripti ...

  5. POJ 1861 Network

    题意:有n个点,部分点之间可以连接无向边,每条可以连接的边都有一个权值.求一种连接方法将这些点连接成一个连通图,且所有连接了的边中权值最大的边权值最小. 解法:水题,直接用Kruskal算法做一遍就行 ...

  6. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  7. POJ 1861 Network (MST)

    题意:求解最小生成树,以及最小瓶颈生成树上的瓶颈边. 思路:只是求最小生成树即可.瓶颈边就是生成树上权值最大的那条边. //#include <bits/stdc++.h> #includ ...

  8. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  9. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  10. poj 3417 Network(tarjan lca)

    poj 3417 Network(tarjan lca) 先给出一棵无根树,然后下面再给出m条边,把这m条边连上,然后每次你能毁掉两条边,规定一条是树边,一条是新边,问有多少种方案能使树断裂. 我们设 ...

随机推荐

  1. 一个简单的MVC框架的实现-基于注解的实现

    1.@Action注解声明 package com.togogo.webtoservice.annotations; import java.lang.annotation.Documented; i ...

  2. Anaconda快捷搭建Python2和Python3环境

    我们在使用Pycharm编辑Python程序经常会因为不熟悉Python2和Python3的一些代码区别而导致错误,我们知道他们之间很多代码是必须运行在对应版本中的,否则是会报错的.因此,本文介绍一个 ...

  3. 编程语言 : Java的动态Web解决方案泛谈

    文章概述 最近发现很久前一股脑地学习框架,发觉越发迷糊.知道了框架只是暂时的,重点是基础的技术.该文大篇幅回顾Servlet技术栈和简要的MVC框架. 至于为什么学J2EE,额,大家都用框架,可框架也 ...

  4. Python之Threading模块

    Thread 先引入一个例子: >>> from threading import Thread,currentThread,activeCount >>> > ...

  5. java中“==”号的运用

    对于值类型,“==”号会判断其是否相等 对于引用类型,“==”对于引用类型则会判断引用(内存地址)是否相同,“==”运算只是调用了对象的equal()方法 public static void mai ...

  6. insert时报Cannot add or update a child row: a foreign key constraint fails (`yanchangzichan`.`productstatusrecord`, CONSTRAINT `p_cu` FOREIGN KEY (`cid`) REFERENCES `customer` (`cid`))错误

    mybatis在insert时报Cannot add or update a child row: a foreign key constraint fails (`yanchangzichan`.` ...

  7. 一步一步搞懂支持向量机——从牧场物语到SVM(上)

    之前在数据挖掘课程上写了篇关于SVM的"科普文",尽量通俗地介绍了SVM的原理和对各公式的理解.最近给正在初学机器学习的小白室友看了一遍,他觉得"很好,看得很舒服&quo ...

  8. CSS实现模糊效果

    HTML代码如下: <body> <h1>body设置了模糊效果</h1> <div id="aa"></div> &l ...

  9. jq实现全选或者全不选

    $("#all").click(function () { if($(this).is(":checked")){ $("input[name='pr ...

  10. npoi导入导出

    NPOI是指构建在POI 3.x版本之上的一个程序,NPOI可以在没有安装Office的情况下对Word或Excel文档进行读写操作. NPOI是一个开源的Java读写Excel.WORD等微软OLE ...