因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官方文档时明白了这是TensorFlow的变量共享机制。

举个例子:当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1。也就是说,生成图像和真实图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制。

变量共享主要涉及到两个函数:  tf.get_variable(<name>, <shape>, <initializer>)  和  tf.variable_scope(<scope_name>)  。

1. tf.get_variable(<name>, <shape>, <initializer>)

例如,我们搭建一个卷积层:

def conv_relu(input, kernel_shape, bias_shape):
    # Create variable named "weights".
    weights = tf.get_variable("weights", kernel_shape,
        initializer=tf.random_normal_initializer())
    # Create variable named "biases".
    biases = tf.get_variable("biases", bias_shape,
        initializer=tf.constant_initializer(0.0))
    conv = tf.nn.conv2d(input, weights,
        strides=[1, 1, 1, 1], padding='SAME')
    return tf.nn.relu(conv + biases)

然后,我们调用两次:

input1 = tf.random_normal([1,10,10,32])
input2 = tf.random_normal([1,20,20,32])
x = conv_relu(input1, kernel_shape=[5, 5, 1, 32], bias_shape=[32])
x = conv_relu(x, kernel_shape=[5, 5, 32, 32], bias_shape = [32])  # This fails.

会发现报错信息。因为执行的命令不明确:第二次调用时是创建一套新的变量(weights,biases)还是再次使用已存在的那一套变量(第一次调用时生成的weights和biases)呢?

这时就需要用到第二个函数: tf.variable_scope(<scope_name>)

2. tf.variable_scope(<scope_name>)

请看例子:

def my_image_filter(input_images):
    with tf.variable_scope("conv1"):
        # Variables created here will be named "conv1/weights", "conv1/biases".
        relu1 = conv_relu(input_images, [5, 5, 1, 32], [32])
    with tf.variable_scope("conv2"):
        # Variables created here will be named "conv2/weights", "conv2/biases".
        return conv_relu(relu1, [5, 5, 32, 32], [32])

在不同的域内会生成不同的变量。

如果想要变量共享,TensorFlow提供了两种方法:

1. 设置  reuse=True

with tf.variable_scope("model"):
  output1 = my_image_filter(input1)
with tf.variable_scope("model", reuse=True):
  output2 = my_image_filter(input2)

2. 调用 scope.reuse_variables()

with tf.variable_scope("model") as scope:
  output1 = my_image_filter(input1)
  scope.reuse_variables()
  output2 = my_image_filter(input2)

注:在官方文档的最后有这样一段话:Since depending on exact string names of scopes can feel dangerous, it's also possible to initialize a variable scope based on another one:

with tf.variable_scope("model") as scope:
  output1 = my_image_filter(input1)
with tf.variable_scope(scope, reuse=True):
  output2 = my_image_filter(input2)

TensorFlow学习笔记3——变量共享的更多相关文章

  1. TensorFlow学习笔记4——变量共享

    因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官 ...

  2. tensorflow学习笔记二----------变量

    tensorflow里面的变量表示,需要使用特定的语法进行.如果想构造一个行(列)向量,需要调用Variable函数进行.对两个变量进行操作,也要调用相应的函数. import tensorflow ...

  3. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  4. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  5. TensorFlow学习笔记(一)

    [TensorFlow API](https://www.tensorflow.org/versions/r0.12/how_tos/variable_scope/index.html) Tensor ...

  6. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  7. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  8. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

  9. TensorFlow学习笔记——LeNet-5(训练自己的数据集)

    在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...

随机推荐

  1. java 中的重载与重写 抽象类与接口的区别

    . 重载与重写的区别: 重载(overload)               | 重写(override) 1 方法的名称相同,参数个数.类型不同 | 方法名称.参数列表.返回值类型与父类完全相同 2 ...

  2. Java之分支和循环

    Java中的分支语句: if语句: if语句的四种写法: (1) if(表达式_布尔值) { ... } (2) if(表达式_布尔值) { ... } else { ... } (3) if(表达式 ...

  3. smarty模板基本语法

    smarty基本语法: 1.注释:<{* this is a comment *}>,注意左右分隔符的写法,要和自己定义的一致. <{* I am a Smarty comment, ...

  4. hibernate之映射文件VS映射注解

    前言 对于java开发者而言,注解应该不是一个陌生的概念,早在JavaSE阶段,例如@Override标记重写父类方法或实现接口方法,@Test标记单元测试方法,所以我们可以简单地把它理解为一种有特殊 ...

  5. Sqlserver事务备份和还原实例

    create database mydb use mydb go create table account( id ), name ), balance float ) go select * fro ...

  6. [C++ Calculator 项目] 基础运算实现

    Calculator V1.1 注:这是C++计算器项目第二部分-运算 [基于初始部分增改而得] 源文件已上传至github 主要问题: Ⅰ.运算实现的问题在于( ) + - * /的优先级的处理,以 ...

  7. Pivot Table系列之切片器 (Slicer)

    1. 遇到的问题: 在Excel中,用PivotTable来做数据报告展示: 问题1:在同一个Sheet页里,多个PivotTable如何实现同步刷新? 问题2:在不同Sheet页之间,多个Pivot ...

  8. hadoop系列三:mapreduce的使用(一)

    转载请在页首明显处注明作者与出处 http://www.cnblogs.com/zhuxiaojie/p/7224772.html 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的 ...

  9. 阿里云有对手了!CDN横评:腾讯云优势明显

    如今,云计算产品越来越多,像国内的BAT三大巨头都提供了云主机(腾讯云CVM.阿里云ECS.百度云BCC),另外还有存储.数据库.安全等相关云服务.在这其中,CDN也是一项重要的云服务,CDN指的是内 ...

  10. webpack命令行

    前面的话 webpack提供了命令行接口(CLI),以便对构建过程进行配置和交互.这对于制定早期原型.轮廓.编写 npm 脚本 或者一些个人自定义需求很有用.本文将详细介绍webpack的命令行接口 ...