2016中国大学生程序设计竞赛 网络选拔赛 I This world need more Zhu
This world need more Zhu
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 262 Accepted Submission(s): 49
In Duoladuo, this place is like a tree. There are n vertices and n−1 edges. And the root is 1. Each vertex can reached by any other vertices. Each vertex has a people with value Ai named Zhu's believer.
Liao is a curious baby, he has m questions to ask Zhu. But now Zhu is busy, he wants you to help him answer Liao's questions.
Liao's question will be like "u v k".
That means Liao want to know the answer from following code:
ans = 0; cnt = 0;
for x in the shortest path from u to v {
cnt++;
if(cnt mod k == 0) ans = max(ans,a[x]);
}
print(ans).
Please read the hints for more details.
In the second line there are two numbers n, m. n is the size of Duoladuo, m is the number of Liao's questions.
The next line contains n integers A1,A2,...An, means the value of ith vertex.
In the next n−1 line contains tow numbers u, v. It means there is an edge between vertex u and vertex v.
The next m lines will be the Liao's question:
u v k
1≤T≤10,1≤n≤100000,1≤m≤100000,1≤u,v≤n,1≤k, Ai≤1000000000.
Then, you need to output the answer for every Liao's questions.
5 5
1 2 4 1 2
1 2
2 3
3 4
4 5
1 1 1
1 3 2
1 3 100
1 5 2
1 3 1
1
2
0
2
4
In query 1,there are only one vertex in the path,so the answer is 1.
In query 2,there are three vertices in the path.But only the vertex 2 mod 2 equals to 0.
In query 3,there are three vertices in the path.But no vertices mod 100 equal to 0.
In query 4,there are five vertices in the path.There are two vertices mod 2 equal to 0.So the answer is max(a[2],a[4]) = 2.
In query 5,there are three vertices in the path.And all the vertices mod 1 equal to 0. So the answer is a[3] = 4.
题意:
给出一棵树,每次询问从u,v,k,代表如果从u到v的路径上的节点从一开始编号的话,编号为k的倍数的节点的权值最大值是多少?
题解:
分k的大小进行讨论
1、当k大于sqrt(n)时,可以进行暴力。
可以知道对于任意一次路径,如果可以O(1)寻找到k步之后的节点的话,不会超过sqrt(n)的节点需要统计。
总复杂度O(sqrt(n))。
O(1)寻找k步之后的节点,我的做法需要离线。
u到lca(u,v)再到v的过程可以看作u到lca(u,v),v到lca(u,v)两部分。
如果对u,v进行修正(往上跳到第一个选取的节点O(logn)或者O(1)),可以认为两部分的询问都是在一条链上进行的。
所以在使用人工栈进行dfs的话,可以O(1)在栈中找到往上k步的节点。 2、当k小于sqrt(n),对于每种k都可以单独处理出所有询问答案。
用类似tarjan求lca的方法,每次对于每种k先O(n)预处理出所有点向上跳K步的父亲。
事实上,某个节点向上k步的父亲就是在dfs序中在在其左侧最近的深度恰好比起高k的节点。 然后进行类似tarjan的过程,只不过每次做并查集时与向上跳K步的父亲merge。
并且在做路径压缩时顺便记录下当前路径的最大值,并且路径压缩到lca为止。
当然,需要预先处理出所有询问u,v的lca。
每次对于某种K,复杂度O(n) 总复杂度O(m sqrt(n)。
const int N = , SQRTN = , M = ;
int n, m;
int value[N];
int depth[N], father[N], dfsList[N];
vector<int> force[N]; struct AdjacencyList {
int head[N], son[N * ], nex[N * ], tot; inline void init(int n = N) {
for(int i = ; i < n; ++i) head[i] = -;
tot = ;
} inline void addEdge(int u, int v) {
son[tot] = v, nex[tot] = head[u];
head[u] = tot++;
} int que[N], len, size[N], pos[N];
bool visit[N];
inline void build(int n, int depth[], int fa[], int dfs[]) {
for(int i = ; i < n; ++i) visit[i] = false, size[i] = ;
len = , que[] = , fa[] = -, depth[] = , visit[] = true;
for(int hed = ; hed < len; ++hed) {
int u = que[hed];
for(int v, tab = head[u]; tab != -; tab = nex[tab])
if(visit[v = son[tab]] == false) {
visit[v] = true, fa[v] = u, depth[v] = depth[u] + ;
que[len++] = v;
}
} for(int i = len - ; i >= ; --i) {
++size[i];
if(fa[i] != -) size[fa[i]] += size[i];
}
dfs[] = , pos[] = ;
for(int i = ; i < len; ++i) {
int u = que[i];
for(int cnt = , tab = head[u], v; tab != -; tab = nex[tab])
if((v = son[tab]) != fa[u]) {
pos[v] = pos[u] + cnt + ;
dfs[pos[v]] = v;
cnt += size[v];
}
}
}
} edge; struct ST {
int fa[N][M], *depth; inline void init(int n, int father[], int tdepth[]) {
depth = tdepth;
for(int i = ; i < n; ++i) fa[i][] = father[i];
for(int dep = ; dep < M; ++dep)
for(int i = ; i < n; ++i)
if(fa[i][dep - ] != -)
fa[i][dep] = fa[fa[i][dep - ]][dep - ];
else fa[i][dep] = -;
} inline int getLca(int u, int v) {
if(depth[u] < depth[v]) swap(u, v);
for(int dep = M - ; dep >= ; --dep)
if(fa[u][dep] != - && depth[fa[u][dep]] >= depth[v])
u = fa[u][dep];
if(u == v) return u;
for(int dep = M - ; dep >= ; --dep)
if(fa[u][dep] != - && fa[u][dep] != fa[v][dep])
u = fa[u][dep], v = fa[v][dep];
return fa[u][];
} inline int getFather(int u, int step) {
for(int dep = M - ; dep >= ; --dep)
if(fa[u][dep] != - && ( << dep) <= step)
u = fa[u][dep], step -= ( << dep);
return u;
}
} st; struct Query {
int u, v, k, lca, ans, id; inline void read() {
scanf("%d%d%d", &u, &v, &k);
--u, --v;
lca = st.getLca(u, v), ans = ;
} inline void upd(int x) {
if(ans < x) ans = x;
} inline void fix(int &u, int lca, int jump, int depth[]) {
if(depth[u] - depth[lca] >= jump) {
u = st.getFather(u, jump);
upd(value[u]);
} else u = lca;
} inline void fix(int depth[]) {
if((depth[u] - depth[lca] + ) % k == ) upd(value[lca]);
fix(v, lca, (depth[u] + depth[v] - depth[lca] * + ) % k, depth);
fix(u, lca, k - , depth);
} inline operator <(const Query &t) const {
return k < t.k;
}
} query[N]; struct SolutionForLessThanSqrtN {
int jump[N], cnt[N], que[N], top;
int f[N], g[N];
vector<int> wait[N]; inline void init(int n, int value[], int depth[], int dfs[], int k) {
for(int i = ; i < n; ++i) wait[i].clear();
for(int i = ; i < n; ++i) f[i] = i, g[i] = value[i]; top = -;
for(int i = ; i < n; ++i) cnt[i] = -;
for(int i = ; i < n; ++i) {
int u = dfs[i];
while(top >= && depth[u] != depth[que[top - ]] + ) --top;
que[++top] = u;
if(depth[u] < k) jump[u] = -;
else jump[u] = cnt[depth[u] - k];
cnt[depth[u]] = u;
}
} inline void add(int idx) {
wait[query[idx].lca].pub(idx);
} inline int expose(int x, int lim = -, int *depth = NULL) {
if(x == lim) return ;
if(x == f[x]) return g[x];
if(depth != NULL && depth[f[x]] <= depth[lim]) return g[x];
int t = f[x];
expose(f[x], lim, depth);
f[x] = f[t], g[x] = max(g[x], g[t]);
return g[x];
} inline void merge(int u, int v) {
expose(u), expose(v);
f[f[u]] = f[v];
} inline void solve(int n, int dfs[], int depth[]) {
for(int i = n - ; i >= ; --i) {
int u = dfs[i];
foreach(idx, wait[u]) {
int i = *idx;
query[i].upd(expose(query[i].u, query[i].lca, depth));
query[i].upd(expose(query[i].v, query[i].lca, depth));
}
if(jump[u] != -) merge(u, jump[u]);
}
}
} solver; inline bool cmpByIndex(const Query &a, const Query &b) {
return a.id < b.id;
} int myStack[N], top; inline void updata(int x, int g, int q, int depth[]) {
while(x >= query[q].k && depth[myStack[x - query[q].k]] > depth[g]) {
x -= query[q].k;
query[q].upd(value[myStack[x]]);
}
} inline void solve() {
for(int i = ; i < m; ++i) query[i].fix(depth);
for(int i = ; i < n; ++i) force[i].clear();
sort(query, query + m); int limit = floor(sqrt(n));
for(int i = , j; i < m; i = j + )
if(query[i].k <= limit) {
for(j = i; j < m - && query[j + ].k == query[i].k; ++j);
solver.init(n, value, depth, dfsList, query[i].k);
for(int k = i; k <= j; ++k) solver.add(k);
solver.solve(n, dfsList, depth);
} else force[query[i].u].pub(i), force[query[i].v].pub(i), j = i; top = -;
for(int i = ; i < n; ++i) {
int x = dfsList[i];
while(top >= && depth[x] != depth[myStack[top]] + ) --top;
myStack[++top] = x;
foreach(q, force[x])
updata(top, query[*q].lca, *q, depth);
} sort(query, query + m, cmpByIndex);
for(int i = ; i < m; ++i) printf("%d\n", query[i].ans);
} int main() {
int testCase;
scanf("%d", &testCase);
for(int testIndex = ; testIndex <= testCase; ++testIndex) {
scanf("%d%d", &n, &m);
edge.init();
for(int i = ; i < n; ++i) scanf("%d", &value[i]);
for(int i = , v, u; i < n - ; ++i) {
scanf("%d%d", &u, &v);
--u, --v;
edge.addEdge(u, v), edge.addEdge(v, u);
}
edge.build(n, depth, father, dfsList);
st.init(n, father, depth);
for(int i = ; i < m; ++i) query[i].id = i, query[i].read();
printf("Case #%d:\n", testIndex);
solve();
}
return ;
}
2016中国大学生程序设计竞赛 网络选拔赛 I This world need more Zhu的更多相关文章
- 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree
Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob
Alice and Bob Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 1004 Danganronpa
Problem Description Chisa Yukizome works as a teacher in the school. She prepares many gifts, which ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 1011 Lweb and String
Problem Description Lweb has a string S. Oneday, he decided to transform this string to a new sequen ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 1001 A water problem (大数取余)
Problem Descripton Two planets named Haha and Xixi in the universe and they were created with the un ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1001 - Buy and Resell 【优先队列维护最小堆+贪心】
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6438 Buy and Resell Time Limit: 2000/1000 MS (Java/O ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ's Salesman 【离散化+树状数组维护区间最大值】
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/O ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】
Tree and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- HDU 6154 - CaoHaha's staff | 2017 中国大学生程序设计竞赛 - 网络选拔赛
/* HDU 6154 - CaoHaha's staff [ 构造,贪心 ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛 题意: 整点图,每条线只能连每个方格的边或者对角线 问面积大于n的 ...
随机推荐
- python学习笔记-(十一)面向对象进阶&异常处理
上篇我们已经了解了一些面向对象的基础知识,本次就了解下面向对象的一些进阶知识(虽然我也不知道有什么卵用). 静态方法 静态方法是一种普通函数,就位于类定义的命名空间中,它不会对任何实例类型进行操作.使 ...
- margin双边距的问题
margin:20px;height:20px;float:left margin:20px;height:20px;float:left
- 你想的到想不到的 javascript 应用小技巧方法
javascript 在前端应用体验小技巧继续积累. 事件源对象 event.srcElement.tagName event.srcElement.type 捕获释放 event.srcElemen ...
- 【Tomcat】tomcat报连接超时错误
程序一直报这个错误 [getui-server][ERROR] [2016-03-17 10:50:00] getui.task.HftMongoInfoTask.execute(137) | --H ...
- rqnoj378 约会计划
题目描述 cc是个超级帅哥,口才又好,rp极高(这句话似乎降rp),又非常的幽默,所以很多mm都跟他关系不错.然而,最关键的是,cc能够很好的调解各各妹妹间的关系.mm之间的关系及其复杂,cc必须严格 ...
- can't debug windows service in win7 64bit
if encount below error: Solution: run the command “vsdiag_regwcf.exe -i” as admin in C:\Program File ...
- css 强制 中文、英文 换行
.livechat-text a { display: block; word-break:break-all; /* 英文换行 */ white-space:normal; /* 中文换行 */ } ...
- URL处理几个关键的函数parse_url、parse_str与http_build_query
parse_url() 该函数可以解析 URL,返回其组成部分.它的用法如下: array parse_url(string $url) 此函数返回一个关联数组,包含现有 URL 的各种组成部分.如果 ...
- linux常用命令-帮助命令man,whatis,apropos,info,help
man 命令 man 配置文件,注意这里只需要写文件名称就可以了,不能写文件的绝对路径 man既可以查看命令的帮助信息也可以查看配置文件的帮助信息,如果内容太多,可以输入"/内容" ...
- Proj.4 API 中文参考
ProjAPI https://github.com/OSGeo/proj.4/wiki/ProjAPI Tom Kralidis在2015年5月27日编辑此页·修订4 简介 执行pj_init()选 ...