luogu P2860 [USACO06JAN]冗余路径Redundant Paths |Tarjan
题目描述
In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.
每对草场之间已经有至少一条路径.给出所有R(F-1≤R≤10000)条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路.
输入格式
Line 1: Two space-separated integers: F and R
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
输出格式
Line 1: A single integer that is the number of new paths that must be built.
连通分量上的广义叶子节点(度数为1)除以2向上取整即为所需要加的边数。
前面相信有很多大佬给出了证明,这里概述如下:题目要求的是所有点至少度数为2,度数为1的点应该至少连一条边,最好的方法当然是一次性连两个度数为1的点,如果最后没有匹配(个数为奇数),仍然要连边,所以得出结论。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=5e4+10,M=5e4+10;
int next[M],head[N],go[M],tot;
inline void add(int u,int v){
next[++tot]=head[u];head[u]=tot;go[tot]=v;
next[++tot]=head[v];head[v]=tot;go[tot]=u;
}
int dfn[N],low[N],st[N],co[N],col,num,top;
inline void Tarjan(int u,int fa){
st[++top]=u;
dfn[u]=low[u]=++num;
for(int i=head[u];i;i=next[i]){
int v=go[i];
if(v==fa)continue;
if(!dfn[v]){
Tarjan(v,u);
low[u]=min(low[v],low[u]);
}else if(!co[v]){
low[u]=min(dfn[v],low[u]);
}
}
if(dfn[u]==low[u]){
co[u]=++col;
while(u!=st[top]){
co[st[top]]=col;
--top;
}
--top;
}
}
int in[N];
struct node{
int u,v;
}e[M];
bool cmp(node t1,node t2){
if(t1.u==t2.u)return t1.v<t2.v;
return t1.u<t2.u;
}
int main(){
int n,m;
cin>>n>>m;
for(int i=1,u,v;i<=m;i++){
scanf("%d%d",&u,&v);
if(u>v)swap(u,v);
e[i]=(node){u,v};
}
sort(e+1,e+1+m,cmp);
for(int i=1;i<=m;i++){
if(e[i].u==e[i-1].u&&e[i].v==e[i-1].v)continue;
add(e[i].u,e[i].v);
}
for(int i=1;i<=n;i++)
if(!dfn[i])Tarjan(i,-1);
for(int i=1;i<=m;i++){
if(e[i].u==e[i-1].u&&e[i].v==e[i-1].v)continue;
if(co[e[i].u]==co[e[i].v])continue;
in[co[e[i].u]]++;
in[co[e[i].v]]++;
}
int ans=0;
for(int i=0;i<=col;i++)
if(in[i]==1)ans++;
cout<<(ans+1)/2<<endl;
}
/*
16 22
1 3
7 1
5 1
12 7
6 3
4 7
8 3
10 7
14 6
11 5
9 7
15 4
2 6
13 12
8 2
2 11
6 1
4 11
1 14
3 10
13 16
13 16
*/
luogu P2860 [USACO06JAN]冗余路径Redundant Paths |Tarjan的更多相关文章
- 【luogu P2860 [USACO06JAN]冗余路径Redundant Paths】 题解
题目链接:https://www.luogu.org/problemnew/show/P2860 考虑在无向图上缩点. 运用到边双.桥的知识. 缩点后统计度为1的点. 度为1是有一条路径,度为2是有两 ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- luogu P2860 [USACO06JAN]冗余路径Redundant Paths
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1- ...
- P2860 [USACO06JAN]冗余路径Redundant Paths tarjan
题目链接 https://www.luogu.org/problemnew/show/P2860 思路 缩点,之后就成了个树一般的东西了 然后(叶子节点+1)/2就是答案,好像贪心的样子,lmc好像讲 ...
- LUOGU P2860 [USACO06JAN]冗余路径Redundant Paths (双联通,缩点)
传送门 解题思路 刚开始是找的桥,后来发现这样不对,因为一条链就可以被卡.后来想到应该缩点后找到度数为1 的点然后两两配对. #include<iostream> #include< ...
- 洛谷 P2860 [USACO06JAN]冗余路径Redundant Paths 解题报告
P2860 [USACO06JAN]冗余路径Redundant Paths 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们 ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- P2860 [USACO06JAN]冗余路径Redundant Paths
题解: 首先要边双缩点这很显然 然后变成树上问题 发现dp,dfs好像不太对 考虑一下度数 发现只要在度数为1的点之间连边 但我好像不太会证明这个东西.. 网上也没有看到比较正确的证明方法和连边策略. ...
- 缩点【洛谷P2860】 [USACO06JAN]冗余路径Redundant Paths
P2860 [USACO06JAN]冗余路径Redundant Paths 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了 ...
随机推荐
- Python - selenium自动化-Chrome(headless)
什么是 Headless Chrome Headless Chrome 是 Chrome 浏览器的无界面形态,可以在不打开浏览器的前提下,使用所有 Chrome 支持的特性运行你的程序.相比于现代浏览 ...
- Python 定义动态变量
问题描述 在做数据处理时,对一些分组得来的数据,所做的操作大同小异,变量的命名也都拥有相同的结构,比如对每个月份的数据求均值.方差等统计量,变量的命名可取为“n月的均值”,“n月的方差”,抽象出来就是 ...
- Java基础系列5:深入理解Java异常体系
该系列博文会告诉你如何从入门到进阶,一步步地学习Java基础知识,并上手进行实战,接着了解每个Java知识点背后的实现原理,更完整地了解整个Java技术体系,形成自己的知识框架. 前言: Java的基 ...
- 项目——基于httpd镜像演示Dockerfile所有的指令
基于httpd镜像演示Dockerfile所有的指令: 第一步:创建Dockerfile工作目录 [root@localhost harbor]# mkdir /test [root@localhos ...
- docker swarm 过滤器affinity 限制副本不会出现在同一个节点上
affinity:container!=容器服务名称(可以是正则) 举个例子:stack_ds.yaml # cat stack_dsc.yaml version: '3.0' services: t ...
- 在react中配置less
在创建项目之后执行 $ yarn eject 抽离配置文件 会多出config和script文件夹 接下来安装less yarn add less less-loader 或者 npm install ...
- 使用iis反向代理.net core应用程序
.net core 其实是自宿主性质的web应用程序,而不再是web网站,所以.net core是可以直接单独作为系统服务部署.但是实际情况中,为了同个一个端口能支持多个web应用和统一管理,还是应该 ...
- Project Euler 62: Cubic permutations
立方数\(41063625 (345^3)\)的各位数重新排列形成另外两个立方数\(6623104 (384^3)\)和\(66430125 (405^3)\).事实上,\(41063625\)是满足 ...
- ZeroC ICE的远程调用框架 ThreadPool
ThreadPool提供Reactor/Proactor服务,并且强偶合了Reactor(反应器)/Proactor(前摄器).不同于Reactor/Proactor使用线程池 进行事件处理的设计.如 ...
- Android的系统框架的深入认识
Android采用层次化系统架构,官方公布的标准架构如下图所示.Android由底层往上分为4个主要功能层,分别是linux内核层(Linux Kernel),系统运行时库层(Libraries和An ...